当前位置: 首页 / 科研学术 / 学术预告 / 正文

Critical radius and supremum of random spherical harmonics

作者:   时间:2017-04-25   点击数:

报告时间:2017年5月9日(星期二) 上午10:00-11:00

地点:知新楼B座1032

报告人:冯仁杰,北京大学国际数学研究中心助理研究员

Title:Critical radius and supremum of random spherical harmonics

Abstract:We first consider deterministic immersions of the d-dimensional sphere into high dimensional Euclidean spaces, where the immersion is via spherical harmonics of level n. The main result is the, a priori unexpected, fact that there is a uniform lower bound to the critical radius of the immersions as n→∞. This fact has immediate implications for random spherical harmonics with fixed L2-norm. In particular, it leads to an exact and explicit formulae for the tail probability of their suprema by Weyl’s tube formula, and also relates this to the expected Euler characteristic of their upper level sets.  The talk is very elementary and accessible to all students. This is the joint work with R. Adler.

地址:中国山东省济南市山大南路27号   邮编:250100  

电话:0531-88364652  院长信箱:sxyuanzhang@sdu.edu.cn

Copyright@山东大学数学学院

微信公众号