当前位置: 首页 / 科研学术 / 学术预告 / 正文

Global existence and large time behavior for the pressureless Euler-Naver-Stokes system in R3

作者:数宣   时间:2025-11-03   点击数:

摘要:We investigate the global Cauchy problem for a two-phase flow model consisting of the pressureless Euler equations coupled with the isentropic compressible Navier-Stokes equations through a drag forcing term. We resolve this problem by proving the global existence and optimal decay rates of classic solutions for the three dimensional Cauchy problem when the initial data is near its equilibrium. One of key observations here is that to overcome the difficulties arising from the absence of pressure in the Euler equations, we make full use of the drag forcing term and the dissipative structure of the Navier-Stokes equations to closure the energy estimates of the variables for the pressureless Euler equations.

个人简介:吴国春,厦门理工学院数学与统计学院副教授,硕士生导师。研究方向为流体力学中的偏微分方程数学理论,在Mathematische Annalen, J. Lond. Math. Soc., SIAM J. Math. Anal., J. Funct. Anal., Sci. China Math.等国际重要学术期刊发表论文40余篇,曾主持国家自然科学基金青年项目1项,参与国家自然科学基金面上项目2项。

邀请人:张英龙 数学学院副研究员

会议时间:2025-11-6(周四)14:30 -15:30

会议地点:腾讯会议:261-151-895

地址:中国山东省济南市山大南路27号   邮编:250100  

电话:0531-88364652  院长信箱:sxyuanzhang@sdu.edu.cn

Copyright@山东大学数学学院

微信公众号