摘要:We investigate the global Cauchy problem for a two-phase flow model consisting of the pressureless Euler equations coupled with the isentropic compressible Navier-Stokes equations through a drag forcing term. We resolve this problem by proving the global existence and optimal decay rates of classic solutions for the three dimensional Cauchy problem when the initial data is near its equilibrium. One of key observations here is that to overcome the difficulties arising from the absence of pressure in the Euler equations, we make full use of the drag forcing term and the dissipative structure of the Navier-Stokes equations to closure the energy estimates of the variables for the pressureless Euler equations.
个人简介:吴国春,厦门理工学院数学与统计学院副教授,硕士生导师。研究方向为流体力学中的偏微分方程数学理论,在Mathematische Annalen, J. Lond. Math. Soc., SIAM J. Math. Anal., J. Funct. Anal., Sci. China Math.等国际重要学术期刊发表论文40余篇,曾主持国家自然科学基金青年项目1项,参与国家自然科学基金面上项目2项。
邀请人:张英龙 数学学院副研究员
会议时间:2025-11-6(周四)14:30 -15:30
会议地点:腾讯会议:261-151-895