当前位置: 首页 / 科研学术 / 学术预告 / 正文

Nonlinear stability of planar viscous shock wave to 3D compressible Navier-Stokes equations

作者:   时间:2022-09-13   点击数:

报告题目:Nonlinear stability of planar viscous shock wave to 3D compressible Navier-Stokes equations

报告摘要:We are concerned with the nonlinear stability of the planar viscous shock up to a time-dependent shift for the three-dimensional (3D) compressible Navier-Stokes equations under the generic perturbations, in particular, without zero mass conditions. Instead of the classical anti-derivative techniques, we perform the stability analysis of planar Navier-Stokes shock in original perturbation framework and therefore zero mass conditions are not necessarily needed, Our proof is motivated by the a-contraction method with time-dependent shift for the stability of viscous shock. This is the first analytical result on the time asymptotic stability of planar viscous shock wave to the multi-dimensional Navier-Stokes system with physical viscosity as far as we know. Moreover, our stability result is unconditional for the weak planar Navier-Stokes shock in 3D case

个人简介:王腾,副教授、博士生导师,博士毕业于中国科学院数学与系统科学研究院。主要研究流体力学方程组和动力学方程解的极限行为等。迄今共计发表SCI论文二十余篇,主要成果发表在“Arch. Rational Mech. Anal.”“SIAM J. Math. Anal.”“Math. Models Methods Appl. Sci.”“Indiana Univ. Math. J.”“Nonlinearity”“J. Differential Equations”等数学期刊。先后主持国家自然科学基金两项。

报告时间:2022915日(周四),上午9:30-10:30

报告地点:腾讯会议

邀请人:陶涛

联系人:陶涛,联系方式:taotao@sdu.edu.cn

 

地址:中国山东省济南市山大南路27号   邮编:250100  

电话:0531-88364652  院长信箱:sxyuanzhang@sdu.edu.cn

Copyright@山东大学数学学院

微信公众号