报告题目:Enumerating coprime permutations & Enumerating Matroids and Linear Spaces
时间:3月31日(周四) 9:00-11:00
地点:Zoom: 890 901 6918 密码: 202203
邀请人:王光辉 孟宪昌
摘要:
1. Enumerating coprime permutations
Define a permutation $\sigma$ to be coprime if $\gcd(m,\sigma(m)) = 1$ for $m\in[n]$. In this note, proving a recent conjecture of Pomerance, we prove that the number of coprime permutations on $[n]$ is $n!\cdot (c+o(1))^n$ where
\[c = \prod_{p\text{ prime }}\frac{(p-1)^{2(1-1/p)}}{p\cdot (p-2)^{(1-2/p)}}.\]
The techniques involve entropy maximization for the upper bound, and a mixture of number-theoretic estimates and the absorbing method for the lower bound.
2. Enumerating Matroids and Linear Spaces
We show that the number of linear spaces on a set of $n$ points and the number of rank-3 matroids on a ground set of size $n$ are both of the form $(cn+o(n))^{n^2/6}$, where $c=e^{\sqrt 3/2-3}(1+\sqrt 3)/2$. This is the final piece of the puzzle for enumerating fixed-rank matroids at this level of accuracy: there are exact formulas for enumeration of rank-1 and rank-2 matroids, and it was recently proved by van der Hofstad, Pendavingh, and van der Pol that for constant $r\ge 4$ there are $(e^{1-r}n+o(n))^{n^{r-1}/r!}$ rank-$r$ matroids on a ground set of size $n$.
主讲人简介:
Ashwin Sah, 美国麻省理工学院数学学院博士生,导师是赵宇飞博士。他的研究兴趣包括组合学、概率论和数论。
Mehtaab Sawhney, 美国麻省理工学院数学学院博士生,导师是赵宇飞博士。他的研究兴趣包括组合与概率。