当前位置: 首页 / 科研学术 / 学术预告 / 正文

Average bound toward the Generalized Ramanujan Conjecture and its applications on Sato-Tate laws for $GL(n)$

作者:   时间:2020-11-06   点击数:

报告人:王英男  学校:深圳大学

时间:20201110日星期二,上午9:00-10:00

地点:腾讯会议  会议ID: 635 866 905

标题:Average bound toward the Generalized Ramanujan Conjecture and its applications on Sato-Tate laws for $GL(n)$

摘要:For any prime $p$ and Hecke-Maass form $\phi$ on $GL(n)$ $(n\geq2)$, $\alpha_{\phi,1}(p),\ldots,\alpha_{\phi,n}(p)$ denote the corresponding Satake parameters of $\phi$ at $p$. The Generalized Ramanujan Conjecture (GRC) asserts that $|\alpha_{\phi,i}(p)|=1$, $i=1,\ldots,n$. In this talk we will discuss the number of Hecke-Maass forms whose Satake parameters at any fixed prime $p$ fail GRC, and its applications on the (vertical) Sato-Tate laws. This is a joint work with Lau Yuk-Kam and Ng Ming Ho.

邀请人:赵立璐教授

 

地址:中国山东省济南市山大南路27号   邮编:250100  

电话:0531-88364652  院长信箱:sxyuanzhang@sdu.edu.cn

Copyright@山东大学数学学院

微信公众号