报告人:王英男 学校:深圳大学
时间:2020年11月10日星期二,上午9:00-10:00
地点:腾讯会议 会议ID: 635 866 905
标题:Average bound toward the Generalized Ramanujan Conjecture and its applications on Sato-Tate laws for $GL(n)$
摘要:For any prime $p$ and Hecke-Maass form $\phi$ on $GL(n)$ $(n\geq2)$, $\alpha_{\phi,1}(p),\ldots,\alpha_{\phi,n}(p)$ denote the corresponding Satake parameters of $\phi$ at $p$. The Generalized Ramanujan Conjecture (GRC) asserts that $|\alpha_{\phi,i}(p)|=1$, $i=1,\ldots,n$. In this talk we will discuss the number of Hecke-Maass forms whose Satake parameters at any fixed prime $p$ fail GRC, and its applications on the (vertical) Sato-Tate laws. This is a joint work with Lau Yuk-Kam and Ng Ming Ho.
邀请人:赵立璐教授