The Fattorini-Hautus test

Guillaume Olive

Seminar, Shandong University

Jinan, March 31 2017

Plan

Part 1: Background on controllability

Part 2: Presentation of the Fattorini-Hautus test

Part 3: Controllability of parabolic systems

Part 4: Stabilization of integro-differential equations

Part 5: Perturbation theorems

Background on controllability

System description

Let H, U be two complex Hilbert spaces. Consider

$$\begin{cases} \frac{d}{dt}y = Ay + B\mathbf{u}, & t \in (0, T), \\ y(0) = y^0, \end{cases}$$
 (abst-ODE)

where

- T > 0 is the time of control.
- y is the state
- y⁰ is the initial data.
- $A:D(A)\subset H\longrightarrow H$ generates a C_0 -semigroup $(S(t))_{t\geq 0}$
- $u \in L^2(0, T; U)$ is the control.
- $B \in \mathcal{L}(U, H)$ is a bounded linear operator.

System description

Let H, U be two complex Hilbert spaces. Consider

$$\begin{cases} \frac{d}{dt}y = Ay + Bu, & t \in (0, T), \\ y(0) = y^0, \end{cases}$$
 (abst-ODE)

where

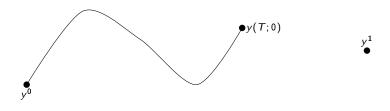
- T > 0 is the time of control.
- y is the state.
- v^0 is the initial data.
- $A: D(A) \subset H \longrightarrow H$ generates a C_0 -semigroup $(S(t))_{t \geq 0}$
- $u \in L^2(0, T; U)$ is the control.
- $B \in \mathcal{L}(U, H)$ is a bounded linear operator.

Well-posedness: For every $y^0 \in H$ and $u \in L^2(0, T; U)$, there exists a unique solution

$$y(t) = S(t)y^0 + \int_0^t S(t-s)Bu(s) ds, \quad \forall t \in [0, T].$$

Note that $y \in C^0([0, T]; H)$ with

$$\|y(t)\|_H \le C \left(\|y^0\|_H + \|u\|_{L^2(0,T;U)}\right), \quad \forall t \in [0,T].$$
 (cont-dep)



 $F_{\mbox{\scriptsize IGURE}} - \mbox{\scriptsize Uncontrolled trajectory}$

- y^0 : initial state, y^1 : target,
- y(T; u): value of the solution to (abst-ODE) at time T with control u.

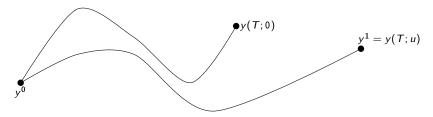


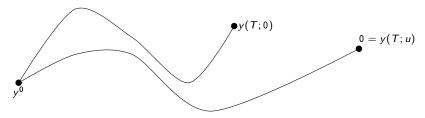
FIGURE - Trajectory controlled exactly

- $ullet y^0$: initial state, y^1 : target,
- y(T; u): value of the solution to (abst-ODE) at time T with control u.

Definition

(abst-ODE) is exactly controllable in time T if

$$\forall y^0, y^1 \in H, \exists u \in L^2(0, T; U), \qquad y(T) = y^1.$$



 ${
m Figure}$ - Trajectory controlled to 0

- y^0 : initial state, y^1 : target,
- y(T; u): value of the solution to (abst-ODE) at time T with control u.

Definition

(abst-ODE) is null-controllable in time T if

$$\forall y^0 \in H, \exists u \in L^2(0, T; U), \qquad y(T) = 0.$$

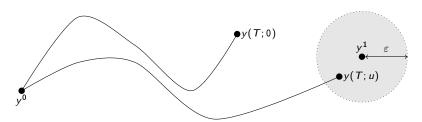


FIGURE - Trajectory controlled approximately

- y^0 : initial state, y^1 : target,
- y(T; u): value of the solution to (abst-ODE) at time T with control u.

Definition

(abst-ODE) is approximately controllable in time T if

$$\forall y^0, y^1 \in H, \, \forall \varepsilon > 0, \, \exists u \in L^2(0, T; U), \qquad \|y(T) - y^1\|_H \le \varepsilon.$$

G. Olive

Reformulation

Let

$$F_T: H \longrightarrow H$$
 $y^0 \longmapsto \overline{y}(T),$

and

$$\begin{array}{cccc} {\it G}_{T} & : & {\it L}^{2}(0,T;{\it U}) & \longrightarrow & {\it H} \\ & & & & \longmapsto & \widehat{\it y}(T) \end{array}$$

so that
$$y(T) = F_T y^0 + G_T u$$
.

Reformulation

Let

$$F_T: H \longrightarrow H$$
 $y^0 \longmapsto \overline{y}(T),$

$$\begin{cases} \frac{d}{dt}\overline{y} = A\overline{y}, & t \in (0,T), \\ \overline{y}(0) = y^0, \end{cases}$$

and

so that $y(T) = F_T y^0 + G_T u$. Therefore,

ullet (abst-ODE) is exactly controllable in time ${\mathcal T}$ if, and only if,

$$\operatorname{Im} G_{\mathcal{T}} = H. \tag{1}$$

• (abst-ODE) is null-controllable in time T if, and only if,

$$\operatorname{Im} F_{\mathcal{T}} \subset \operatorname{Im} G_{\mathcal{T}}. \tag{2}$$

ullet (abst-ODE) is approximately controllable in time T if, and only if,

$$\overline{\operatorname{Im} G_T} = H. \tag{3}$$

Reformulation

Let

$$F_{T} : H \longrightarrow H$$

$$y^{0} \longmapsto \overline{y}(T),$$

$$\begin{cases} \frac{d}{dt}\overline{y} = A\overline{y}, \quad t \in (0, T), \\ \overline{y}(0) = y^{0}, \end{cases}$$

and

so that $y(T) = F_T y^0 + G_T u$. Therefore,

• (abst-ODE) is exactly controllable in time \mathcal{T} if, and only if,

$$\operatorname{Im} G_T = H$$
.

• (abst-ODE) is null-controllable in time T if, and only if,

$$\operatorname{Im} F_T \subset \operatorname{Im} G_T. \tag{2}$$

ullet (abst-ODE) is approximately controllable in time ${\mathcal T}$ if, and only if,

$$\overline{\operatorname{Im} G_T} = H. \tag{3}$$

Remark : If dim $H<+\infty$ (in particular $A\in\mathcal{L}(H)$), then all these notions are equivalent :

- (1) \iff (2) since $\operatorname{Im} F_T = H$.
- (1) \iff (3) since dim Im $G_T < +\infty$.

(1)

Duality

By (cont-dep) we have $F_T \in \mathcal{L}(H)$ and $G_T \in \mathcal{L}(L^2(0,T;U),H)$. Thus,

ullet (abst-ODE) is exactly controllable in time ${\cal T}$ if, and only if,

$$||z^1||_H \leq C||G_T^*z^1||_H, \quad \forall z^1 \in H.$$

• (abst-ODE) is null-controllable in time T if, and only if,

$$\|F_T^*z^1\|_H \leq C\|G_T^*z^1\|_H, \quad \forall z^1 \in H.$$

ullet (abst-ODE) is approximately controllable in time ${\mathcal T}$ if, and only if,

$$\ker G_T^* = \{0\}.$$

Let us compute G_T^* .

Duality

By (cont-dep) we have $F_T \in \mathcal{L}(H)$ and $G_T \in \mathcal{L}(L^2(0,T;U),H)$. Thus,

• (abst-ODE) is exactly controllable in time T if, and only if,

$$\|z^1\|_H \leq C\|G_T^*z^1\|_H, \quad \forall z^1 \in H.$$

(abst-ODE) is null-controllable in time T if, and only if,

$$||F_T^*z^1||_H \le C||G_T^*z^1||_H, \quad \forall z^1 \in H.$$

ullet (abst-ODE) is approximately controllable in time ${\cal T}$ if, and only if,

$$\ker G_T^* = \{0\}.$$

Let us compute G_T^* . Multiplying (abst-ODE) by z, solution to the adjoint system

$$\begin{cases}
-\frac{d}{dt}z = A^*z, & t \in (0, T), \\
z(T) = z^1,
\end{cases}$$

we obtain

$$y(T) \cdot z^{1} - y^{0} \cdot z(0) = \int_{0}^{T} u(t) \cdot B^{*}z(t) dt.$$

Duality

By (cont-dep) we have $F_T \in \mathcal{L}(H)$ and $G_T \in \mathcal{L}(L^2(0,T;U),H)$. Thus,

ullet (abst-ODE) is exactly controllable in time ${\mathcal T}$ if, and only if,

$$||z^1||_H \le C||G_T^*z^1||_H, \quad \forall z^1 \in H.$$

(abst-ODE) is null-controllable in time T if, and only if,

$$||F_T^*z^1||_H \le C||G_T^*z^1||_H, \quad \forall z^1 \in H.$$

ullet (abst-ODE) is approximately controllable in time ${\cal T}$ if, and only if,

$$\ker G_T^* = \{0\}.$$

Let us compute G_T^* Multiplying (abst-ODE) by z, solution to the adjoint system

$$\begin{cases}
-\frac{d}{dt}z = A^*z, & t \in (0, T), \\
z(T) = z^1,
\end{cases}$$

we obtain

$$y(T) \cdot z^{1} - y^{0} \cdot z(0) = \int_{0}^{T} u(t) \cdot B^{*}z(t) dt.$$

This shows that

Presentation of the Fattorini-Hautus test

Finite dimension

Let $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times m}$.

$$\begin{cases} \frac{d}{dt}y &= Ay + Bu, \quad t \in (0, T), \\ y(0) &= y^0 \in \mathbb{C}^n. \end{cases}$$
 (ODE)

Theorem (Fattorini (1966), Hautus (1969))

(ODE) is controllable if, and only if,

$$\ker(\lambda-A^*)\cap\ker B^*=\left\{0\right\},\quad\forall\lambda\in\mathbb{C}.\tag{Fatt}$$

Finite dimension

Let $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times m}$.

$$\begin{cases}
\frac{d}{dt}y = Ay + Bu, & t \in (0, T), \\
y(0) = y^0 \in \mathbb{C}^n.
\end{cases}$$
(ODE)

Theorem (Fattorini (1966), Hautus (1969))

(ODE) is controllable if, and only if,

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$
 (Fatt)

Proof: Let us denote $S(t) = e^{tA}$. Let

$$N = \{z \in \mathbb{C}^n, \quad B^*S(t)^*z = 0, \quad t \in [0, T]\}.$$

We have to prove that $N = \{0\}$. Taking t = 0 we see that

$$N \subset \ker B^*$$
.

Taking the derivative of the identity $B^*S(t)^*z = 0$ we obtain

$$A^*N\subset N$$
.

Thus, if $N \neq \{0\}$, there exist eigen-elements $\lambda \in \mathbb{C}$ et $\xi \in \mathbb{C}^n$ such that

$$\xi \neq 0$$
, $\xi \in \ker(\lambda - A^*) \cap \ker B^*$,

a contradiction with (Fatt).

Infinite dimension

Let H and U be two complex Hilbert spaces. We assume that

- $A: D(A) \subset H \longrightarrow H$ generates C_0 -semigroup on H.
- $B \in \mathcal{L}(U, H)$.

$$\begin{cases}
\frac{d}{dt}y = Ay + Bu, & t \in (0, T), \\
y(0) = y^0 \in H.
\end{cases}$$
(4)

Theorem (Fattorini (1966))

Assume that :

- (i) A generates an analytic C₀-semigroup.
- (ii) $\sigma(A) = \{\lambda_k\}$ has only isolated eigenvalues with finite (alg.) multiplicities.
- (iii) The family of generalized eigenvectors of A is complete in H.

Then, (4) is approximately controllable if, and only if,

$$\ker(\lambda-A^*)\cap\ker B^*=\{0\}\,,\quad \forall \lambda\in\mathbb{C}.$$
 (Fatt)

Remarks:

- \bullet (i) implies that the approximate controllability does not depend on the time T.
- (ii) is satisfied if the resolvent of A is compact.
- (iii) holds for perturbations of self-adjoint operators (Keldysh's theorem).

Proof of the Fattorini-Hautus test

Let $N = \{z \in H, B^*S(t)^*z = 0 \text{ a.e. } t \in (0, +\infty)\}$. The Laplace transform gives

$$N = \left\{ z \in H, \quad B^*(\lambda - A^*)^{-1}z = 0, \quad \forall \lambda \in \rho(A^*) \right\}.$$

Let

$$P_k = \frac{1}{2\pi i} \int_{|\xi - \lambda_k| = \varepsilon_k} (\xi - A)^{-1} d\xi.$$

By (ii) we have $\dim \operatorname{Im} P_k^* < +\infty$ with

$$\operatorname{Im} P_k^* = \ker(\overline{\lambda_k} - A^*)^{m_k}.$$

Set

$$N_{k,j} = (\overline{\lambda_k} - A^*)^j P_k^* N.$$

Since

$$N_{k,m_k}=\left\{0\right\},$$

we have

$$A^*N_{k,m_k-1}\subset N_{k,m_k-1}.$$

Since

$$\dim N_{k,m_k-1}<+\infty,\quad N_{k,m_k-1}\subset\ker B^*,$$

the Fattorini-Hautus test (Fatt) gives

$$N_{k,m_k-1} = \{0\}.$$

By iteration,

$$N_{k,0} = P_k^* N = \{0\}.$$

Since this is true for every k, by (iii) we obtain $N = \{0\}$.

• If $\exists T > 0$ such that (A, B) is exactly controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is exactly controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is null-controllable in time T, then

$$\ker(\lambda-A^*)\cap\ker B^*=\left\{0\right\},\quad\forall\lambda\in\mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is exactly controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is null-controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is approximately controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is exactly controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is null-controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If $\exists T > 0$ such that (A, B) is approximately controllable in time T, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

• If (A, B) is rapidly stabilizable, then

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

Approximate controllability of the heat equation

$$\begin{cases} \partial_t y - \Delta y = \mathbbm{1}_\omega u & \text{ in } (0,T) \times \Omega, \\ y = 0 & \text{ on } (0,T) \times \partial \Omega, \\ y(0) = y^0 & \text{ in } \Omega. \end{cases} \\ \begin{cases} \partial_t z - \Delta z = 0 & \text{ in } (0,T) \times \Omega, \\ z = 0 & \text{ on } (0,T) \times \partial \Omega, \\ z(0) = z^0 & \text{ in } \Omega. \end{cases}$$

Theorem

(chal) is approximately controllable (in time T for every T>0).

Approximate controllability of the heat equation

$$\begin{cases} \partial_t y - \Delta y = \mathbbm{1}_\omega u & \text{ in } (0,T) \times \Omega, \\ y = 0 & \text{ on } (0,T) \times \partial \Omega, \\ y(0) = y^0 & \text{ in } \Omega. \end{cases} \\ \text{(chal)} \end{cases} \begin{cases} \partial_t z - \Delta z = 0 & \text{ in } (0,T) \times \Omega, \\ z = 0 & \text{ on } (0,T) \times \partial \Omega, \\ z(0) = z^0 & \text{ in } \Omega. \end{cases}$$

Theorem

(chal) is approximately controllable (in time T for every T > 0).

"Classical" proof : We write

$$z(t) = \sum_{k=1}^{+\infty} \alpha_k e^{-\lambda_k t} \phi_k, \quad (\Delta \phi_k = -\lambda_k \phi_k).$$

Using the analyticity in time,

$$\mathbb{1}_{\omega}z(t) = \sum_{k=1}^{+\infty} \alpha_k e^{-\lambda_k t} \left(\mathbb{1}_{\omega} \phi_k \right) = 0, \quad \forall t \in [0, +\infty).$$

Multiplying by $e^{\lambda_1 t}$ and letting $t \to +\infty$:

$$\alpha_1 \mathbb{1}_{\omega} \phi_1 = 0$$
 (rem : $\phi_1 \in \ker(-\lambda_1 - \Delta) \cap \ker \mathbb{1}_{\omega}$).

Thus, $\alpha_1=0$. Then we iterate, we multiply by $e^{\lambda_2 t}$ to obtain $\alpha_2=0$, etc.

G. Olive

Controllability of parabolic systems

Joint work with Franck Boyer

Toy model of parabolic systems

We will focus on the distributed controllability of the following 2 imes 2 system by 1 control :

$$\begin{cases} \partial_t y_1 - \Delta y_1 = \mathbb{1}_{\omega} u & \text{in } (0, T) \times \Omega, \\ \partial_t y_2 - \Delta y_2 = \frac{\partial}{\partial 1} (x) y_1 & \text{in } (0, T) \times \Omega, \\ y_1 = y_2 = 0 & \text{on } (0, T) \times \partial \Omega, \\ y_1(0) = y_1^0, \quad y_2(0) = y_2^0, \quad \text{in } \Omega, \end{cases}$$
 (syst)

where

- (y_1, y_2) is the state and $(y_1^0, y_2^0) \in L^2(\Omega)^2$ the initial data,
 - $u \in L^2(0, T; L^2(\Omega))$ is the control,
 - $\omega \subset \Omega$ localises in space the control,
 - $a_{21} \in L^{\infty}(\Omega)$ couples the second equation to the first one.

Remark: The controllability of (syst) by 2 controls is easy (apply Carleman estimates to both equations and add them up).

Theorem (de Teresa (2000))

Assume that there exist a nonempty open subset $\omega'\subset\subset\omega$ and $\varepsilon>0$ such that

$$a_{21}(x) \ge \varepsilon$$
, a.e. $x \in \omega'$.

Then, (syst) is null-controllable in time T for every T > 0.

This hypothesis thus requires that $\omega \cap \operatorname{supp} a_{21} \neq \emptyset$.

Spectral properties

Let

$$A = \begin{pmatrix} \Delta & 0 \\ a_{21} & \Delta \end{pmatrix}, \quad D(A) = (H^2(\Omega) \cap H^1_0(\Omega))^2.$$

ullet The adjoint of A is

$$A^* = \begin{pmatrix} \Delta & a_{21} \\ 0 & \Delta \end{pmatrix}, \quad D(A^*) = D(A).$$

Spectral properties

Let

$$A = egin{pmatrix} \Delta & 0 \ a_{21} & \Delta \end{pmatrix}, \quad D(A) = (H^2(\Omega) \cap H^1_0(\Omega))^2.$$

• The adjoint of A is

$$A^* = \begin{pmatrix} \Delta & a_{21} \\ 0 & \Delta \end{pmatrix}, \quad D(A^*) = D(A).$$

The spectrums are

$$\sigma(A) = \sigma(A^*) = \{-\lambda_k\}_{k \in \mathbb{N}^*}.$$

Spectral properties

Let

$$A = \begin{pmatrix} \Delta & 0 \\ a_{21} & \Delta \end{pmatrix}, \quad D(A) = (H^2(\Omega) \cap H^1_0(\Omega))^2.$$

• The adjoint of A is

$$A^* = \begin{pmatrix} \Delta & a_{21} \\ 0 & \Delta \end{pmatrix}, \quad D(A^*) = D(A).$$

The spectrums are

$$\sigma(A) = \sigma(A^*) = \{-\lambda_k\}_{k \in \mathbb{N}^*}.$$

ullet Denoting P_k the spectral projection of Δ associated with $-\lambda_k$, the eigenspaces of A^* are

$$\ker(-\lambda_k - A^*) = V_k \oplus^{\perp} W_k,$$

where

$$V_k = \left\{ \begin{pmatrix} v \\ 0 \end{pmatrix} \middle| v \in \ker(-\lambda_k - \Delta) \right\}, \quad W_k = \left\{ \begin{pmatrix} S_k(a_{21}w) \\ w \end{pmatrix} \middle| w \in \ker(-\lambda_k - \Delta) \cap \ker(P_k a_{21}) \right\},$$

where $S_k: f \in \ker P_k \longmapsto v \in \ker P_k$ with v the unique solution (in $\ker P_k$) of

$$\begin{cases} (-\lambda_k - \Delta)v &= f & \text{in } \Omega, \\ v &= 0 & \text{on } \partial \Omega. \end{cases}$$

Sufficient conditions

Theorem (Kavian and de Teresa (2010), Olive (2014))

Assume that

$$\ker(-\lambda_k - \Delta) \cap \ker(P_k a_{21}) = \{0\}, \quad \forall k \in \mathbb{N}^*.$$
 (5)

Then, (syst) is approximately controllable.

- In general, (5) is not a necessary condition.
- (5) can be reformulated into

$$\det\left(\int_{\Omega} a_{21}\phi_{k,i}\phi_{k,j}\,dx\right)_{1\leq i,j\leq m_k} \neq 0, \quad \forall k\in\mathbb{N}^*,$$
(6)

where $\phi_{k,1}, \ldots, \phi_{k,m_k}$ is a basis of $\ker(-\lambda_k - \Delta)$.

ullet In the one-dimensional case $\Omega=(0,1)$ (denoting $\phi_{k,1}=\phi_k$ since $m_k=1$)

$$\mathcal{I}_k = \int_0^1 a_{21} (\phi_k)^2 \ dx \neq 0, \quad \forall k \in \mathbb{N}^*.$$

Proof of Olive (2014)

Let

$$B = \begin{pmatrix} \mathbb{1}_{\omega} \\ 0 \end{pmatrix}, \quad D(B) = L^2(\Omega)^2.$$

By the Fattorini-Hautus test, the approximate controllability is equivalent to

$$\ker(-\lambda_k - A^*) \cap \ker B^* = \{0\}, \quad \forall k \in \mathbb{N}^*.$$

By assumption

$$W_k = \{0\}, \quad \forall k \in \mathbb{N}^*,$$

so that

$$\ker(-\lambda_k - A^*) = V_k = \left\{ \begin{pmatrix} v \\ 0 \end{pmatrix} \middle| v \in \ker(-\lambda_k - \Delta) \right\}, \quad \forall k \in \mathbb{N}^*.$$

As a result

$$\begin{pmatrix} v \\ w \end{pmatrix} \in \ker(-\lambda_k - A^*) \cap \ker B^* \iff (w = 0 \quad \text{ and } \quad v \in \ker(-\lambda_k - \Delta) \cap \ker \mathbb{1}_{\omega}).$$

The unique continuation for a single equation then gives

$$v = 0$$
.

Reduction to a nonhomogeneous scalar elliptic problem

- In this part, we focus again on the approximate controllability.
- By the Fattorini-Hautus test, we have to study the property

$$-\Delta v - \lambda_k v = a_{21} w \quad \text{in } \Omega \\ -\Delta w - \lambda_k w = 0 \quad \text{in } \Omega \\ u = 0 \quad \text{in } \omega \\ \end{pmatrix} \Longrightarrow v = w = 0 \text{ in } \Omega.$$

We treat this problem as a nonhomogeneous scalar equation :

$$-\Delta v - \lambda_k v = F \quad \text{in } \Omega,$$

where $F = a_{21}w$ is known.

Notations

- From now on, $\Omega = (0,1)$.
- $\omega \subset \Omega$ is still the control domain and ω is not necessarily connected.
- ullet ϕ_k denotes again the eigenfunctions of $\partial_{\!\scriptscriptstyle X\!X}$ associated with $-\lambda_k$

Notations

- From now on, $\Omega = (0,1)$.
- $\omega \subset \Omega$ is still the control domain and ω is not necessarily connected.
- ullet ϕ_k denotes again the eigenfunctions of ∂_{xx} associated with $-\lambda_k$.
- Let $\mathcal{C}\left(\overline{\Omega\backslash\omega}\right)$ be the set of connected component of $\overline{\Omega\backslash\omega}$.

Notations

- From now on, $\Omega = (0,1)$.
- $\omega \subset \Omega$ is still the control domain and ω is not necessarily connected.
- ullet ϕ_k denotes again the eigenfunctions of ∂_{xx} associated with $-\lambda_k$.
- Let $\mathcal{C}\left(\overline{\Omega\backslash\omega}\right)$ be the set of connected component of $\overline{\Omega\backslash\omega}$.
- ullet For every $C\in\mathcal{C}\left(\overline{\Omegaackslash\omega}
 ight)$ and $F\in L^2(\Omega)$, let $M_k\left(F,C
 ight)$ be the vector of \mathbb{R}^2 defined by

$$M_{k}\left(F,C\right) = \begin{pmatrix} \int_{C} F\phi_{k} \, dx \\ 0 \end{pmatrix} \text{ if } C \cap \partial\Omega \neq \emptyset, \quad M_{k}\left(F,C\right) = \begin{pmatrix} \int_{C} F\phi_{k} \, dx \\ \int_{C} F\phi'_{k} \, dx \end{pmatrix} \text{ si } C \cap \partial\Omega = \emptyset,$$

For instance,

$$\Longrightarrow M_k\left(F,C\right) = \begin{pmatrix} \int_C F\phi_k \, dx \\ 0 \end{pmatrix}, \quad \forall C \in \mathcal{C}\left(\overline{\Omega \backslash \omega}\right).$$

Notations

- From now on, $\Omega = (0,1)$.
- $\omega \subset \Omega$ is still the control domain and ω is not necessarily connected.
- ullet ϕ_k denotes again the eigenfunctions of ∂_{xx} associated with $-\lambda_k$.
- Let $\mathcal{C}\left(\overline{\Omega\backslash\omega}\right)$ be the set of connected component of $\overline{\Omega\backslash\omega}$.
- ullet For every $C\in\mathcal{C}\left(\overline{\Omegaackslash\omega}
 ight)$ and $F\in L^2(\Omega)$, let $M_k\left(F,C
 ight)$ be the vector of \mathbb{R}^2 defined by

$$M_{k}\left(F,C\right) = \begin{pmatrix} \int_{C} F\phi_{k} \, dx \\ 0 \end{pmatrix} \text{ if } C \cap \partial\Omega \neq \emptyset, \quad M_{k}\left(F,C\right) = \begin{pmatrix} \int_{C} F\phi_{k} \, dx \\ \int_{C} F\phi'_{k} \, dx \end{pmatrix} \text{ si } C \cap \partial\Omega = \emptyset,$$

For instance,

ullet Finally, for every $F\in L^2(\Omega)$ we define the following family of vectors of \mathbb{R}^2 :

$$\mathcal{M}_{k}\left(F,\omega\right)=\left(M_{k}\left(F,C\right)\right)_{C\in\mathcal{C}\left(\overline{\Omega\backslash\omega}\right)}\in\left(\mathbb{R}^{2}\right)^{\mathcal{C}\left(\overline{\Omega\backslash\omega}\right)}.$$

Unique continuation for a 1D nonhomogeneous elliptic equation

Theorem (Boyer and Olive (2014))

Let $k \in \mathbb{N}^*$ and $F \in L^2(\Omega)$. We have

$$\exists v \in H^2(\Omega) \cap H^1_0(\Omega), \quad \begin{cases} -\partial_{xx} v - k^2 \pi^2 v = F & \text{in } \Omega, \\ v = 0 & \text{in } \omega, \end{cases}$$

if, and only if,

$$\begin{cases} F = 0 & \text{in } \omega, \\ \mathcal{M}_k(F, \omega) = 0. \end{cases}$$

Application

Theorem (Boyer and Olive (2014))

Assume that $\omega \cap \operatorname{supp} a_{21} = \emptyset$. Then, (syst) is approximately controllable if, and only if,

 $\mathcal{M}_k(a_{21}\phi_k,\omega)\neq 0, \quad \forall k\in\mathbb{N}^*.$

Simple conditions for the approximate controllability

Corollary (Boyer and Olive (2014))

Assume that $\omega \cap \text{supp } a_{21} = \emptyset$.

Output Sufficient condition: (syst) is approximately controllable if a₂₁ satisfies

$$\mathcal{I}_k = \int_0^1 a_{21}(\phi_k)^2 dx \neq 0, \quad \forall k \in \mathbb{N}^*.$$
 (7)

Q Necessary condition: if (syst) is approximately controllable and ω , supp a_{21} are connected, then (7) has to hold.

In general, (7) is not necessary.

Role of the geometry of the control domain

Let us take a look at the particular case

$$a_{21}(x) = \left(x - \frac{1}{2}\right) \mathbb{1}_{\mathcal{O}}(x), \quad \mathcal{O} = \operatorname{supp} a_{21} = \left(\frac{1}{4}, \frac{3}{4}\right).$$

Consider the two following geometric configurations for ω :

- (syst) is not approximately controllable in configuration (a).
- (syst) is approximately controllable in configuration (b).

Stabilization of integro-differential equations

Joint work with
Jean-Michel Coron and Long Hu

The equation

We consider

$$\begin{cases} u_{t}(t,x) - u_{x}(t,x) = \int_{0}^{L} g(x,y)u(t,y) \, dy & t \in (0,T), \\ u(t,L) = U(t) & x \in (0,L), \\ u(0,x) = u^{0}(x), & (transp-g) \end{cases}$$

where:

- T > 0 is the time of control and L > 0 is the length of the domain.
- u^0 is the initial data and u is the state.
- $g \in L^2((0, L) \times (0, L))$ is a given kernel.
- $U \in L^2(0, T)$ is a boundary control.



Example borrowed from Smyshlyaev and Krstic (2008) :

$$\begin{cases} u_{t}(t,x) - u_{x}(t,x) &= v(t,x), \\ u(t,L) &= U(t), \\ u(0,x) &= u^{0}(x), \end{cases} \begin{cases} v_{xx}(t,x) - v(t,x) &= u(t,x), \\ v_{x}(t,0) &= 0, \\ v(t,L) &= V(t). \end{cases} t \in (0,T),$$

Can we find U, V as functions of u, v such that, for some T > 0,

$$u(T,\cdot) = v(T,\cdot) = 0$$
 ?
(remark: $u(T,\cdot) = 0 \Longrightarrow v(T,\cdot) = 0$).

Example borrowed from Smyshlyaev and Krstic (2008) :

$$\begin{cases} u_{t}(t,x) - u_{x}(t,x) &= v(t,x), \\ u(t,L) &= U(t), \\ u(0,x) &= u^{0}(x), \end{cases} \begin{cases} v_{xx}(t,x) - v(t,x) &= u(t,x), \\ v_{x}(t,0) &= 0, \\ v(t,L) &= V(t). \end{cases} t \in (0,T),$$

Can we find U, V as functions of u, v such that, for some T > 0,

$$u(T,\cdot) = v(T,\cdot) = 0$$
 ?
(remark: $u(T,\cdot) = 0 \Longrightarrow v(T,\cdot) = 0$).

First, we solve the ODE:

$$v(t,x) = \frac{\cosh(x)}{\cosh(L)} \left(V(t) - \underbrace{\int_0^L u(t,y) \sinh(L-y) \, dy}_{\text{Fredholm}} \right) + \underbrace{\int_0^x u(t,y) \sinh(x-y) \, dy}_{\text{Volterra}}.$$

Example borrowed from Smyshlyaev and Krstic (2008) :

$$\begin{cases} u_{t}(t,x) - u_{x}(t,x) &= v(t,x), \\ u(t,L) &= U(t), \\ u(0,x) &= u^{0}(x), \end{cases} \begin{cases} v_{xx}(t,x) - v(t,x) &= u(t,x), \\ v_{x}(t,0) &= 0, \\ v(t,L) &= V(t). \end{cases} t \in (0,T),$$

Can we find U, V as functions of u, v such that, for some T > 0,

$$u(T,\cdot) = v(T,\cdot) = 0$$
 ?
(remark: $u(T,\cdot) = 0 \Longrightarrow v(T,\cdot) = 0$).

First, we solve the ODE:

$$v(t,x) = \frac{\cosh(x)}{\cosh(L)} \left(V(t) - \underbrace{\int_0^L u(t,y) \sinh(L-y) \, dy}_{\text{Fredholm}} \right) + \underbrace{\int_0^x u(t,y) \sinh(x-y) \, dy}_{\text{Volterra}}.$$

• If we have 2 controls : take V such that v(t,0)=0 : Volterra integral.

Example borrowed from Smyshlyaev and Krstic (2008) :

$$\begin{cases} u_{t}(t,x) - u_{x}(t,x) &= v(t,x), \\ u(t,L) &= U(t), \\ u(0,x) &= u^{0}(x), \end{cases} \begin{cases} v_{xx}(t,x) - v(t,x) &= u(t,x), \\ v_{x}(t,0) &= 0, \\ v(t,L) &= V(t). \end{cases} t \in (0,T),$$

Can we find U, V as functions of u, v such that, for some T > 0,

$$u(T,\cdot) = v(T,\cdot) = 0$$
 ?
(remark: $u(T,\cdot) = 0 \Longrightarrow v(T,\cdot) = 0$).

First, we solve the ODE:

$$v(t,x) = \frac{\cosh(x)}{\cosh(L)} \left(V(t) - \underbrace{\int_0^L u(t,y) \sinh(L-y) \, dy}_{\text{Fredholm}} \right) + \underbrace{\int_0^x u(t,y) \sinh(x-y) \, dy}_{\text{Volterra}}.$$

- If we have 2 controls : take V such that v(t,0)=0 : Volterra integral.
- If we have 1 control (V = 0): Fredholm integral.

Notions of stabilization

Stability (U(t) = 0): We say that (transp-g) is

ullet exp. stable if the solution u with U(t)=0 satisfies

$$||u(t)||_{L^2} \le M_\omega e^{-\omega t} ||u^0||_{L^2}, \quad \forall t \ge 0,$$

for some $\omega > 0$ and $M_{\omega} > 0$.

• stable in finite time T if the solution u with U(t)=0 satisfies

$$u(t) = 0, \quad \forall t \geq T.$$

Notions of stabilization

Stability (U(t) = 0): We say that (transp-g) is

ullet exp. stable if the solution u with U(t)=0 satisfies

$$||u(t)||_{L^2} \le M_\omega e^{-\omega t} ||u^0||_{L^2}, \quad \forall t \ge 0,$$

for some $\omega>0$ and $M_{\omega}>0$.

• stable in finite time T if the solution u with U(t)=0 satisfies

$$u(t) = 0, \quad \forall t \geq T.$$

Stabilization (U(t) = Fu(t)): We say that (transp-g) is

- exp. stabilizable if (transp-g) with $U(t) = F_{\omega} u(t)$ is exp. stable.
- ullet rap. stabilizable if this holds for every $\omega>0$.
- stabilizable in finite time T if (transp-g) with U(t) = Fu(t) is stable in finite time T.

Relations between controllability and stabilization

Stabilization:

ullet Finite time stabilization \Longrightarrow rap. stabilization \Longrightarrow exp. stabilization.

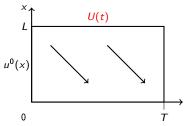
Relations:

- Finite time stabilization ⇒ (NC).
- (NC) ⇒ rap. stabilization :
 - Wonham (1967) in finite dimension
 - Datko (1971) for bounded control operators

Controllability of the transport equation

Consider

$$\left\{ \begin{array}{l} u_t(t,x)-u_x(t,x)=0,\\ u(t,L)={\color{red} U(t)},\\ u(0,x)=u^0(x),\\ t\in(0,T),\,x\in(0,L). \end{array} \right. \label{eq:controller}$$



- ullet Controllability : (transp-0) is (exactly, null or approximately) controllable in time T if, and only if, $T \geq L$.
- ullet Stabilization : (transp-0) is stable in finite time T=L.

Abstract form of (transp-g)

Let us rewrite (transp-g) in the abstract form in $L^2(0,L)$:

$$\left\{ \begin{array}{ll} \displaystyle \frac{d}{dt}u = & Au + BU, \quad t \in (0,T), \\ u(0) = & u^0, \end{array} \right.$$

Abstract form of (transp-g)

Let us rewrite (transp-g) in the abstract form in $L^2(0,L)$:

$$\left\{ \begin{array}{ll} \displaystyle \frac{d}{dt}u = & Au + BU, \quad t \in (0,T), \\ u(0) = & u^0, \end{array} \right.$$

where the unbounded operator A is

$$Au = u_x + \int_0^L g(\cdot, y)u(y) dy,$$

with domain $D(A)=\left\{u\in H^1(0,L)\,\big|\,u(L)=0\right\}$, and $B\in\mathcal{L}(\mathbb{C},D(A^*)')$ is

$$\langle BU, z \rangle_{D(A^*)', D(A^*)} = U\overline{z(L)}.$$

Abstract form of (transp-g)

Let us rewrite (transp-g) in the abstract form in $L^2(0,L)$:

$$\left\{ \begin{array}{ll} \displaystyle \frac{d}{dt}u = & Au + BU, \quad t \in (0,T), \\ \displaystyle u(0) = & u^0, \end{array} \right.$$

where the unbounded operator A is

$$Au = u_x + \int_0^L g(\cdot, y)u(y) dy,$$

with domain $D(A)=\left\{u\in H^1(0,L)\,\big|\,u(L)=0\right\}$, and $B\in\mathcal{L}(\mathbb{C},D(A^*)')$ is

$$\langle BU, z \rangle_{D(A^*)', D(A^*)} = U\overline{z(L)}.$$

We can show that there exists a unique solution (by transposition)

$$u \in C^0([0,T];L^2(0,L)).$$

We know that :

ullet In general, (transp-g) is not stable.

We know that :

• In general, (transp-g) is not stable. Indeed,

$$\forall g(x,y) = g \text{ large enough}, \quad \exists \lambda > 0, \quad \ker(\lambda - A) \neq \{0\}.$$

We know that :

• In general, (transp-g) is not stable. Indeed,

$$\forall g(x,y) = g \text{ large enough}, \qquad \exists \lambda > 0, \quad \ker(\lambda - A) \neq \{0\}.$$

• (transp-g) is stabilizable in finite time T = L, if

$$g(x,y) = 0$$
, $x \le y$ (Volterra Integral $\int_0^x dy$).

Smyshlyaev and Krstic (2008).

We know that :

In general, (transp-g) is not stable. Indeed,

$$\forall g(x,y) = g \text{ large enough}, \qquad \exists \lambda > 0, \quad \ker(\lambda - A) \neq \{0\}.$$

• (transp-g) is stabilizable in finite time T = L, if

$$g(x,y) = 0$$
, $x \le y$ (Volterra Integral $\int_0^x dy$).

Smyshlyaev and Krstic (2008).

- (transp-g) is stabilizable in finite time T = L, if
 - g is small enough.
 - or -
 - $g(x,y) = g_2(y)$ with $1 \int_0^L g_2(y) \left(\int_y^L e^{-\lambda_0(x-y)} dx \right) dy \neq 0$, where $\lambda_0 = \int_0^L g_2(y) dy$.

Argomedo-Bribiesca and Krstic (2015).

Let us consider the problem :

$$\begin{cases} \text{ Find } \theta \in H^1(\mathcal{T}_+) \cap H^1(\mathcal{T}_-) \text{ such that } : \\ \theta_x(x,y) + \theta_y(x,y) + \int_0^L \overline{g(y,\sigma)} \theta(x,\sigma) d\sigma = \overline{g(y,x)}, \\ \theta(0,y) = 0, \quad \theta(L,y) = 0, \end{cases} \quad (E)$$

Theorem (Coron, Hu and Olive (2016))

Assume that (E) has a solution. Then, (transp-g) is stabilizable in finite time T=L if, and only if,

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

(Fatt)

Let us consider the problem :

$$\begin{cases} \text{ Find } \theta \in H^1(\mathcal{T}_+) \cap H^1(\mathcal{T}_-) \text{ such that } : \\ \theta_x(x,y) + \theta_y(x,y) + \int_0^L \overline{g(y,\sigma)} \theta(x,\sigma) d\sigma = \overline{g(y,x)}, \\ \theta(0,y) = 0, \quad \theta(L,y) = 0, \end{cases} \quad (E)$$

Theorem (Coron, Hu and Olive (2016))

Assume that (E) has a solution. Then, (transp-g) is stabilizable in finite time T=L if, and only if,

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$
 (Fatt)

• Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...

Let us consider the problem :

$$\begin{cases} \text{ Find } \theta \in H^1(\mathcal{T}_+) \cap H^1(\mathcal{T}_-) \text{ such that } : \\ \theta_x(x,y) + \theta_y(x,y) + \int_0^L \overline{g(y,\sigma)} \theta(x,\sigma) d\sigma = \overline{g(y,x)}, \\ \theta(0,y) = 0, \quad \theta(L,y) = 0, \end{cases}$$
 (E)

Theorem (Coron, Hu and Olive (2016))

$$\ker(\lambda-A^*)\cap\ker B^*=\{0\}\,,\quad orall\lambda\in\mathbb{C}.$$
 (Fatt)

- Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
- T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).

Let us consider the problem :

$$\begin{cases} \text{ Find } \theta \in H^1(\mathcal{T}_+) \cap H^1(\mathcal{T}_-) \text{ such that } : \\ \theta_x(x,y) + \theta_y(x,y) + \int_0^L \overline{g(y,\sigma)} \theta(x,\sigma) d\sigma = \overline{g(y,x)}, \\ \theta(0,y) = 0, \quad \theta(L,y) = 0, \end{cases} \quad (E)$$

Theorem (Coron, Hu and Olive (2016))

$$\ker(\lambda-A^*)\cap\ker B^*=\{0\}\,,\quad \forall \lambda\in\mathbb{C}.$$
 (Fatt)

- Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
- T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).
- (E) and (Fatt) are different.

Let us consider the problem :

$$\begin{cases} \text{ Find } \theta \in H^1(\mathcal{T}_+) \cap H^1(\mathcal{T}_-) \text{ such that } : \\ \theta_x(x,y) + \theta_y(x,y) + \int_0^L \overline{g(y,\sigma)} \theta(x,\sigma) d\sigma = \overline{g(y,x)}, \\ \theta(0,y) = 0, \quad \theta(L,y) = 0, \end{cases}$$
 (E)

Theorem (Coron, Hu and Olive (2016))

$$\ker(\lambda-A^*)\cap\ker B^*=\left\{0\right\},\quad\forall\lambda\in\mathbb{C}.\tag{Fatt}$$

- Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
- T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).
- (E) and (Fatt) are different.
- In the finite dimensional case, (Fatt) characterizes the rap. stabilization.

Let us consider the problem :

$$\begin{cases} \text{ Find } \theta \in H^1(\mathcal{T}_+) \cap H^1(\mathcal{T}_-) \text{ such that } : \\ \theta_x(x,y) + \theta_y(x,y) + \int_0^L \overline{g(y,\sigma)} \theta(x,\sigma) d\sigma = \overline{g(y,x)}, \\ \theta(0,y) = 0, \quad \theta(L,y) = 0, \end{cases} \quad \text{(E)}$$

Theorem (Coron, Hu and Olive (2016))

$$\ker(\lambda-A^*)\cap\ker B^*=\left\{0\right\},\quad\forall\lambda\in\mathbb{C}.\tag{Fatt}$$

- Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
- T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).
- (E) and (Fatt) are different.
- In the finite dimensional case, (Fatt) characterizes the rap. stabilization.
- (Fatt) can fail for an arbitrary large number of λ .

Let us consider the problem :

$$\begin{cases} \text{Find } \theta \in H^1(\mathcal{T}_+) \cap H^1(\mathcal{T}_-) \text{ such that :} \\ \theta_x(x,y) + \theta_y(x,y) + \int_0^L \overline{g(y,\sigma)} \theta(x,\sigma) d\sigma = \overline{g(y,x)}, \\ \theta(0,y) = 0, \quad \theta(L,y) = 0, \end{cases} (E)$$

Theorem (Coron, Hu and Olive (2016))

$$\ker(\lambda - A^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$
 (Fatt)

- Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
- T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).
- (E) and (Fatt) are different.
- In the finite dimensional case, (Fatt) characterizes the rap. stabilization.
- (Fatt) can fail for an arbitrary large number of λ.
- Important corollary: all the notions of controllability/stabilizability are equivalent, under assumption (E).

Basic idea of Backstepping

Find F and P such that

$$\left\{ \begin{array}{ll} \displaystyle \frac{d}{dt} u = & Au + B \left(Fu \right), \\ u(0) = & u^0. \\ \text{(initial system)} \end{array} \right. \underbrace{\left\{ \begin{array}{ll} \displaystyle \frac{d}{dt} w = & A_0 w, \\ w(0) = & w^0. \\ \text{(target system)} \end{array} \right. }_{\text{(target system)}}$$

where:

- The target system is stable.
- P is invertible.

Remark: Stability is preserved by change of variables.

Basic idea of Backstepping

Find F and P such that

$$\left\{ \begin{array}{ll} \displaystyle \frac{d}{dt}u = & Au + B\left(Fu\right), \\ u(0) = & u^0. \\ & \text{(initial system)} \end{array} \right. \underbrace{\left. \begin{array}{ll} \displaystyle \frac{d}{dt}w = & A_0w, \\ w(0) = & w^0. \\ & \text{(target system)} \end{array} \right.$$

where:

- The target system is stable.
- P is invertible.

Remark: Stability is preserved by change of variables.

In finite dimension, we can take $A_0=A-\lambda$ with $\lambda>0$ large enough, Coron (2015).

Choice of the target system

For equation (transp-g), we choose as target system

$$\begin{cases} w_{t}(t,x) - w_{x}(t,x) = 0, \\ w(t,L) = 0, & t \in (0,+\infty), x \in (0,L), \\ w(0,x) = w^{0}(x), \end{cases}$$
 (targ)

which is stable in finite time T = L:

$$w(t,\cdot)=0, \quad \forall t\geq L.$$

Choice of the transformation

We look for $P: L^2(0,L) \longrightarrow L^2(0,L)$ in the form

$$P = \mathrm{Id} - K$$

where, additionally, K is an integral operator with kernel k:

$$u(t,x) = w(t,x) - \int_0^L k(x,y)w(t,y)dy,$$
 (Fred-transfo)

Choice of the transformation

We look for $P: L^2(0,L) \longrightarrow L^2(0,L)$ in the form

$$P = \mathrm{Id} - K$$

where, additionally, K is an integral operator with kernel k:

$$u(t,x) = w(t,x) - \int_0^L k(x,y)w(t,y)dy,$$
 (Fred-transfo)

Goal: Find k such that:

- (Fred-transfo) maps (targ) into (transp-g).
- (Fred-transfo) is invertible.

Choice of the transformation

We look for $P: L^2(0,L) \longrightarrow L^2(0,L)$ in the form

$$P = \mathrm{Id} - K$$

where, additionally, K is an integral operator with kernel k:

$$u(t,x) = w(t,x) - \int_0^L k(x,y)w(t,y)dy,$$
 (Fred-transfo)

Goal: Find k such that:

- (Fred-transfo) maps (targ) into (transp-g).
- (Fred-transfo) is invertible.

The feedback law F will then be given by the trace at x = L:

$$Fu = -\int_0^L k(L, y)(P^{-1}u)(y) dy.$$

Choice of the transformation

We look for $P: L^2(0,L) \longrightarrow L^2(0,L)$ in the form

$$P = \mathrm{Id} - K$$

where, additionally, K is an integral operator with kernel k:

$$u(t,x) = w(t,x) - \int_0^L k(x,y)w(t,y)dy,$$
 (Fred-transfo)

Goal: Find k such that:

- (Fred-transfo) maps (targ) into (transp-g).
- (Fred-transfo) is invertible.

The feedback law F will then be given by the trace at x = L:

$$Fu = -\int_0^L k(L, y)(P^{-1}u)(y) dy.$$

Fredholm transformations have been used in :

- Coron and Lü (2014) for the rap. stabilization of a Korteweg-de Vries equation.
- Coron and Lü (2015) for the rap. stabilization of a Kuramoto-Sivashinsky equ.
- Argomedo-Bribiesca and Krstic (2015) for (transp-g).

Differentiating (Fred-transfo) w r t t gives

$$u_{t}(t,x) = w_{t}(t,x) - \int_{0}^{L} k(x,y)w_{t}(t,y)dy$$

$$= w_{x}(t,x) - \int_{0}^{L} k(x,y)w_{y}(t,y)dy$$

$$= w_{x}(t,x) + \int_{0}^{L} k_{y}(x,y)w(t,y)dy - k(x,L)w(t,L) + k(x,0)w(t,0).$$

Differentiating (Fred-transfo) w r t t gives

$$u_{t}(t,x) = w_{t}(t,x) - \int_{0}^{L} k(x,y)w_{t}(t,y)dy$$

$$= w_{x}(t,x) - \int_{0}^{L} k(x,y)w_{y}(t,y)dy$$

$$= w_{x}(t,x) + \int_{0}^{L} k_{y}(x,y)w(t,y)dy - k(x,L)w(t,L) + k(x,0)w(t,0).$$

Differentiating (Fred-transfo) w r t x gives

$$-u_{\mathsf{x}}(t,x)=-w_{\mathsf{x}}(t,x)+\int_{0}^{L} \mathsf{k}_{\mathsf{x}}(x,y)w(t,y)dy.$$

Differentiating (Fred-transfo) w r t t gives

$$u_{t}(t,x) = w_{t}(t,x) - \int_{0}^{L} k(x,y)w_{t}(t,y)dy$$

$$= w_{x}(t,x) - \int_{0}^{L} k(x,y)w_{y}(t,y)dy$$

$$= w_{x}(t,x) + \int_{0}^{L} k_{y}(x,y)w(t,y)dy - k(x,L)w(t,L) + k(x,0)w(t,0).$$

Differentiating (Fred-transfo) w.r.t x gives

$$-u_{\mathsf{x}}(t,x) = -w_{\mathsf{x}}(t,x) + \int_0^L \mathsf{k}_{\mathsf{x}}(x,y)w(t,y)dy.$$

On the other hand,

$$-\int_0^L g(x,y)u(t,y)\,dy = \int_0^L \left(-g(x,y) + \int_0^L g(x,\sigma)k(\sigma,y)\,d\sigma\right)w(t,y)\,dy.$$

Differentiating (Fred-transfo) w r t t gives

$$u_{t}(t,x) = w_{t}(t,x) - \int_{0}^{L} k(x,y)w_{t}(t,y)dy$$

$$= w_{x}(t,x) - \int_{0}^{L} k(x,y)w_{y}(t,y)dy$$

$$= w_{x}(t,x) + \int_{0}^{L} k_{y}(x,y)w(t,y)dy - k(x,L)w(t,L) + k(x,0)w(t,0).$$

Differentiating (Fred-transfo) w r t x gives

$$-u_{\mathsf{x}}(t,x) = -w_{\mathsf{x}}(t,x) + \int_0^L \mathsf{k}_{\mathsf{x}}(x,y)w(t,y)dy.$$

On the other hand,

$$-\int_0^L g(x,y)u(t,y)\,dy = \int_0^L \left(-g(x,y) + \int_0^L g(x,\sigma)k(\sigma,y)\,d\sigma\right)w(t,y)\,dy.$$

As a result, k has to satisfy the following kernel equation:

$$\begin{cases} k_y(x,y) + k_x(x,y) + \int_0^L g(x,\sigma)k(\sigma,y)d\sigma = g(x,y), \\ k(x,0) = 0. \end{cases}$$

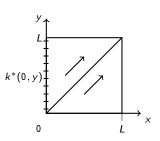
The equation of the adjoint kernel

Let us introduce the adjoint kernel

$$k^*(x,y) = \overline{k(y,x)}.$$

Then, k^* has to verify

$$\begin{cases} k_x^*(x,y) + k_y^*(x,y) + \int_0^L \overline{g(y,\sigma)} k^*(x,\sigma) d\sigma = \overline{g(y,x)}, \\ k^*(0,y) = 0, \end{cases}$$
 $x,y \in (0,L).$



The equation of the adjoint kernel

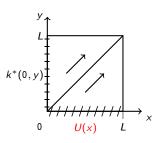
Let us introduce the adjoint kernel

$$k^*(x,y) = \overline{k(y,x)}.$$

Then, k^* has to verify

$$\begin{cases} k_x^*(x,y) + k_y^*(x,y) + \int_0^L \overline{g(y,\sigma)} k^*(x,\sigma) d\sigma = \overline{g(y,x)}, \\ k^*(x,0) = U(x), & \text{(well posed for every U)}, \\ k^*(0,y) = 0, \end{cases} \qquad x,y \in (0,L).$$

There is an infinite number of choices for the kernel.



The equation of the adjoint kernel

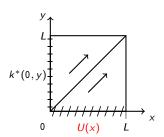
Let us introduce the adjoint kernel

$$k^*(x,y) = \overline{k(y,x)}.$$

Then, k^* has to verify

$$\begin{cases} k_x^*(x,y) + k_y^*(x,y) + \int_0^L \overline{g(y,\sigma)} k^*(x,\sigma) d\sigma = \overline{g(y,x)}, \\ k^*(x,0) = \textit{U}(x), & \text{(well posed for every \textit{U})}, \\ k^*(0,y) = 0, & \end{cases} x,y \in (0,L).$$

There is an infinite number of choices for the kernel.



PROBLEM: not every corresponding (Fred-transfo) is invertible.

G. Olive

Assumption (E)

With the assumption (E), we assume that there exists U such that the solution to

$$\begin{cases} k_x^*(x,y) + k_y^*(x,y) + \int_0^L \overline{g(y,\sigma)} k^*(x,\sigma) d\sigma = \overline{g(y,x)}, \\ k^*(x,0) = U(x), \\ k^*(0,y) = 0, \end{cases}$$
 $x, y \in (0, L),$

satisfies the final condition

$$k^*(L,\cdot)=0.$$

We will prove that (Fred-transfo) is then invertible, if (Fatt) holds.

We want to prove that $P = \operatorname{Id} - K$ is invertible. Clearly,

 $\operatorname{Id} - K$ is invertible \iff $\operatorname{Id} - K^*$ is invertible.

We want to prove that $P = \operatorname{Id} - K$ is invertible. Clearly,

 $\operatorname{Id} - K$ is invertible \iff $\operatorname{Id} - K^*$ is invertible.

Since K^* is compact, by the Fredholm alternative

$$\operatorname{Id} - K^*$$
 is invertible \iff $N = \ker(\operatorname{Id} - K^*) = \{0\}$,

and

$$\dim N<+\infty.$$

We want to prove that $P = \operatorname{Id} - K$ is invertible. Clearly,

 $\operatorname{Id} - K$ is invertible \iff $\operatorname{Id} - K^*$ is invertible.

Since K^* is compact, by the Fredholm alternative

$$\operatorname{Id} - K^* \text{ is invertible} \quad \Longleftrightarrow \quad N = \ker(\operatorname{Id} - K^*) = \{0\}\,,$$

and

$$\dim N < +\infty$$
.

We can establish that :

- $N \subset \ker B^*$, thanks to the final condition $k^*(L,\cdot) = 0$.
- N is stable by A^* , thanks to the kernel equation and $N \subset \ker B^*$.

We want to prove that $P = \operatorname{Id} - K$ is invertible. Clearly,

 $\operatorname{Id} - K$ is invertible \iff $\operatorname{Id} - K^*$ is invertible.

Since K^* is compact, by the Fredholm alternative

$$\operatorname{Id} - K^*$$
 is invertible \iff $N = \ker(\operatorname{Id} - K^*) = \{0\}$,

and

$$\dim N < +\infty$$
.

We can establish that :

- $N \subset \ker B^*$, thanks to the final condition $k^*(L, \cdot) = 0$.
- N is stable by A^* , thanks to the kernel equation and $N \subset \ker B^*$.

Since N is finite dimensional, $A^*_{|N}$ has at least one eigenfunction : $A^*\xi=\lambda\xi,\,\xi\in N,\,\xi\neq 0$. Thus,

$$\xi \in \ker(\lambda - A^*) \cap \ker B^*$$
,

but

$$\xi \neq 0$$
,

a contradiction with (Fatt).

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T=L. Then, (E) holds and (Fatt) is satisfied.

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T = L. Then, (E) holds and (Fatt) is satisfied.

Proof:

• Firstly, we solve the free nonhomogeneous equation :

we solve the free nonhomogeneous equation :
$$\begin{cases} p_x(x,y) + p_y(x,y) + \int_0^L \overline{g(y,\sigma)} p(x,\sigma) d\sigma = \overline{g(y,x)}, \\ p(x,0) = 0, \\ p(0,y) = 0, \end{cases} x,y \in (0,L).$$

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T=L. Then, (E) holds and (Fatt) is satisfied.

Proof:

Firstly, we solve the free nonhomogeneous equation :

$$\begin{cases} p_x(x,y) + p_y(x,y) + \int_0^L \overline{g(y,\sigma)} p(x,\sigma) d\sigma = \overline{g(y,x)}, \\ p(x,0) = 0, \\ p(0,y) = 0, \end{cases} x, y \in (0,L).$$

• Secondly, we pick a control U such that

$$\begin{cases} q_{x}(x,y) + q_{y}(x,y) + \int_{0}^{L} \overline{g(y,\sigma)} q(x,\sigma) d\sigma = 0, \\ q(x,0) = U(x), \\ q(0,y) = 0, \quad q(L,y) = -p(L,y), \end{cases} x, y \in (0,L).$$

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T=L. Then, (E) holds and (Fatt) is satisfied.

Proof:

• Firstly, we solve the free nonhomogeneous equation :

$$\begin{cases} p_x(x,y) + p_y(x,y) + \int_0^L \overline{g(y,\sigma)} p(x,\sigma) d\sigma = \overline{g(y,x)}, \\ p(x,0) = 0, \\ p(0,y) = 0, \end{cases} x, y \in (0,L).$$

• Secondly, we pick a control U such that

$$\begin{cases} q_{x}(x,y) + q_{y}(x,y) + \int_{0}^{L} \overline{g(y,\sigma)} q(x,\sigma) d\sigma = 0, \\ q(x,0) = U(x), \\ q(0,y) = 0, \quad q(L,y) = -p(L,y), \end{cases} x, y \in (0,L).$$

• Then, $\theta = p + a$

Proposition (Coron, Hu and Olive (2016))

 $\textit{Assume that } (\mathsf{transp-} g) \textit{ is null-controllable in time } T = L. \textit{ Then, } (\mathsf{E}) \textit{ holds and } (\mathsf{Fatt}) \textit{ is satisfied.}$

Proof:

• Firstly, we solve the free nonhomogeneous equation :

$$\begin{cases} p_x(x,y) + p_y(x,y) + \int_0^L \overline{g(y,\sigma)} p(x,\sigma) d\sigma = \overline{g(y,x)}, \\ p(x,0) = 0, \\ p(0,y) = 0, \end{cases} x, y \in (0,L).$$

• Secondly, we pick a control U such that

$$\begin{cases} q_x(x,y) + q_y(x,y) + \int_0^L \overline{g(y,\sigma)} q(x,\sigma) d\sigma = 0, \\ q(x,0) = U(x), \\ q(0,y) = 0, \quad q(L,y) = -p(L,y), \end{cases} x, y \in (0,L).$$

• Then, $\theta = p + q$.

Remark: The null-controllability assumption is stronger than (Fatt).

Proposition (Coron, Hu and Olive (2016))

Assume that

$$g(x,y)=g_1(x)g_2(y).$$

Then, (E) has a solution.

Proposition (Coron, Hu and Olive (2016))

Assume that

$$g(x,y)=g_1(x)g_2(y).$$

Then, (E) has a solution.

Moreover, (Fatt) is equivalent to

$$\int_0^L e^{-\lambda x} \overline{g_1(x)} \left(\int_0^x e^{\lambda y} \overline{g_2(y)} \, dy \right) \, dx \neq 1, \quad \forall \lambda \in Z(g_2),$$

where $Z(g_2)=\left\{\lambda\in\mathbb{C}\,:\,\int_0^Le^{\lambda y}\overline{g_2(y)}\,dy=0\right\}$

In particular, if we assume

$$g(x,y)=g_1(x),$$

then (Fatt) is equivalent to

$$\frac{1}{\lambda_k} \left(\lambda_0 - \int_0^L e^{-\lambda_k x} \overline{g_1(x)} \, dx \right) \neq 1, \quad \forall k \neq 0 \quad (k \in \mathbb{Z}),$$
 (8)

where $\lambda_k = \frac{2k\pi}{L}i$ for $k \neq 0$ and $\lambda_0 = \int_0^L \overline{g_1(x)} dx$.

In particular, if we assume

$$g(x,y)=g_1(x),$$

then (Fatt) is equivalent to

$$\frac{1}{\lambda_k} \left(\lambda_0 - \int_0^L e^{-\lambda_k x} \overline{g_1(x)} \, dx \right) \neq 1, \quad \forall k \neq 0 \quad (k \in \mathbb{Z}),$$
 (8)

where $\lambda_k = \frac{2k\pi}{L}i$ for $k \neq 0$ and $\lambda_0 = \int_0^L \overline{g_1(x)} \, dx$.

Moreover, (8) has to be checked only for a finite number of k since

$$\frac{1}{\lambda_k} \left(\lambda_0 - \int_0^L e^{-\lambda_k x} \overline{g_1(x)} \, dx \right) \xrightarrow[k \to \pm \infty]{} 0.$$

In particular, if we assume

$$g(x,y)=g_1(x),$$

then (Fatt) is equivalent to

$$\frac{1}{\lambda_k} \left(\lambda_0 - \int_0^L e^{-\lambda_k x} \overline{g_1(x)} \, dx \right) \neq 1, \quad \forall k \neq 0 \quad (k \in \mathbb{Z}),$$
 (8)

where $\lambda_k = \frac{2k\pi}{L}i$ for $k \neq 0$ and $\lambda_0 = \int_0^L \overline{g_1(x)} \, dx$.

Moreover, (8) has to be checked only for a finite number of k since

$$\frac{1}{\lambda_k} \left(\lambda_0 - \int_0^L e^{-\lambda_k x} \overline{g_1(x)} \, dx \right) \xrightarrow[k \to \pm \infty]{} 0.$$

On the other hand, (8) can fail for an arbitrary large number N of k. For instance :

$$g(x,y) = g_1(x) = \frac{2}{L} \sum_{k=1}^{N} \frac{2k\pi}{L} \sin\left(\frac{2k\pi}{L}x\right).$$

Finally, if

$$g(x,y)=g_2(y),$$

then (Fatt) is equivalent to

$$\left\{ \begin{array}{ll} \displaystyle \int_0^L e^{\lambda_0 y} \overline{g_2(y)} \, dy \neq 0 & \quad \text{si } \lambda_0 \neq 0, \\ \\ \displaystyle -\int_0^L y \, \overline{g_2(y)} \, dy \neq 1 & \quad \text{si } \lambda_0 = 0, \end{array} \right.$$

where $\lambda_0 = \int_0^L \overline{g_2(y)} \, dy$.

Finally, if

$$g(x,y)=g_2(y),$$

then (Fatt) is equivalent to

$$\left\{ \begin{array}{ll} \displaystyle \int_0^L e^{\lambda_0 y} \overline{g_2(y)} \, dy \neq 0 & \quad \text{si } \lambda_0 \neq 0, \\ -\displaystyle \int_0^L y \, \overline{g_2(y)} \, dy \neq 1 & \quad \text{si } \lambda_0 = 0, \end{array} \right.$$

where $\lambda_0 = \int_0^L \overline{g_2(y)} \, dy$

Equivalent to the condition of Argomedo-Bribiesca and Krstic (2015)

But the kernels are different:

$$\theta(x,y) = \begin{cases} \int_0^x \overline{g_2(y)} \, dy, & \text{si } (x,y) \in \mathcal{T}_+, \\ -\int_x^L \overline{g_2(y)} \, dy, & \text{si } (x,y) \in \mathcal{T}_-, \end{cases} \neq \theta(x,y) = \int_0^x e^{-\lambda_0(x-y)} \overline{g_2(y)} \, dy,$$

(unless $\lambda_0 = 0$).

Perturbation theorems

Joint work with MICHEL DUPREZ

First perturbation theorem

Let H and U be two Hilbert spaces. Assume that

- $A_0: D(A_0) \subset H \longrightarrow H$ generates a C_0 -semigroup on H.
- $B \in \mathcal{L}(U, H)$ is bounded.
- $K \in \mathcal{L}(H)$

Let us form

$$A_K = A_0 + K, \quad D(A_K) = D(A_0).$$

Theorem (Duprez and Olive, 2016)

We assume that :

- $\exists T^* > 0$ such that (A_0, B) is exactly controllable in time T^* .
- K is compact.
- (A_K, B) is approximatively controllable in time T^* .

Then, (A_K, B) is exactly controllable in time T^* .

This is known as the uniqueness-compactness argument. Introduced in control theory by E. Zuazua (1987).

Second perturbation theorem

Theorem (Duprez and Olive, 2016)

We assume that :

- $\exists T^* > 0$ such that (A_0, B) is exactly controllable in time T^* .
- K is compact.
- (A_K, B) satisfies the Fattorini-Hautus test

$$\ker(\lambda - A_K^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

Then, (A_K, B) is exactly controllable in time T for every $T > T^*$.

Second perturbation theorem

Theorem (Duprez and Olive, 2016)

We assume that :

- $\exists T^* > 0$ such that (A_0, B) is exactly controllable in time T^* .
- K is compact.
- (A_K, B) satisfies the Fattorini-Hautus test

$$\ker(\lambda - A_K^*) \cap \ker B^* = \{0\}, \quad \forall \lambda \in \mathbb{C}.$$

Then, (A_K, B) is exactly controllable in time T for every $T > T^*$.

Applications:

- Controllability of integro-differential equations.
- Controllability of systems of wave equations.
- Controllability of parabolic systems (by transmutation).
- etc.

Some references

Boundary approximate controllability of some linear parabolic systems, G. OLIVE, Evol. Equ. Control Theory 3 (2014), no. 1, 167-189.

Approximate controllability conditions for some linear 1D parabolic systems with space-dependent coefficients, F. Boyer and G. Olive, Math. Control Relat. Fields 4 (2014), no. 3, 263-287.

Stabilization and controllability of first-order integro-differential hyperbolic equations, J.-M. Coron, L. Hu and G. Olive, J. Funct. Anal. 271 (2016), 3554-3587.

Perturbations of controlled systems, M. Duprez and G. Olive, submitted (2016).

Thank you for your attention!

articles available at https://math-golive.com