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Part I

Background on controllability
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System description

Let H,U be two complex Hilbert spaces. Consider
d

dt
y = Ay + Bu, t ∈ (0,T ),

y(0) = y0,
(abst-ODE)

where
T > 0 is the time of control.

y is the state.

y0 is the initial data.

A : D(A) ⊂ H −→ H generates a C0-semigroup (S(t))t≥0.

u ∈ L2(0,T ;U) is the control.

B ∈ L(U,H) is a bounded linear operator.

Well-posedness : For every y0 ∈ H and u ∈ L2(0,T ;U), there exists a unique solution

y(t) = S(t)y0 +

∫ t

0

S(t − s)Bu(s) ds, ∀t ∈ [0,T ].

Note that y ∈ C0([0,T ];H) with

‖y(t)‖H ≤ C
(
‖y0‖H + ‖u‖L2(0,T ;U)

)
, ∀t ∈ [0,T ]. (cont-dep)
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Notions of controllability

y0

y1
y(T ; 0)

y1

= y(T ; u)

0

= y(T ; u)

y(T ; u)

y1 ε

Figure � Uncontrolled trajectory

y0 : initial state, y1 : target,

y(T ; u) : value of the solution to (abst-ODE) at time T with control u.

De�nition
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Notions of controllability

y0

y1

y(T ; 0)
y1 = y(T ; u)

0

= y(T ; u)

y(T ; u)

y1 ε

Figure � Trajectory controlled exactly

y0 : initial state, y1 : target,

y(T ; u) : value of the solution to (abst-ODE) at time T with control u.

De�nition

(abst-ODE) is exactly controllable in time T if

∀y0, y1 ∈ H, ∃u ∈ L2(0,T ;U), y(T ) = y1.
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Notions of controllability

y0

y1

y(T ; 0)

y1

= y(T ; u)

0 = y(T ; u)

y(T ; u)

y1 ε

Figure � Trajectory controlled to 0

y0 : initial state, y1 : target,

y(T ; u) : value of the solution to (abst-ODE) at time T with control u.

De�nition

(abst-ODE) is null-controllable in time T if

∀y0 ∈ H, ∃u ∈ L2(0,T ;U), y(T ) = 0.
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Notions of controllability

y0

y1

y(T ; 0)

y1

= y(T ; u)

0

= y(T ; u)

y(T ; u)

y1 ε

Figure � Trajectory controlled approximately

y0 : initial state, y1 : target,

y(T ; u) : value of the solution to (abst-ODE) at time T with control u.

De�nition

(abst-ODE) is approximately controllable in time T if

∀y0, y1 ∈ H, ∀ε > 0, ∃u ∈ L2(0,T ;U), ‖y(T )− y1‖H ≤ ε.
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Reformulation

Let
FT : H −→ H

y0 7−→ y(T ),


d

dt
y = Ay , t ∈ (0,T ),

y(0) = y0,

and

GT : L2(0,T ;U) −→ H

u 7−→ ŷ(T ),


d

dt
ŷ = Aŷ + Bu, t ∈ (0,T ),

ŷ(0) = 0,

so that y(T ) = FT y
0 + GTu.

Therefore,

(abst-ODE) is exactly controllable in time T if, and only if,

ImGT = H. (1)

(abst-ODE) is null-controllable in time T if, and only if,

ImFT ⊂ ImGT . (2)

(abst-ODE) is approximately controllable in time T if, and only if,

ImGT = H. (3)

Remark : If dimH < +∞ (in particular A ∈ L(H)), then all these notions are equivalent :

(1) ⇐⇒ (2) since ImFT = H.

(1) ⇐⇒ (3) since dim ImGT < +∞.
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Duality

By (cont-dep) we have FT ∈ L(H) and GT ∈ L(L2(0,T ;U),H). Thus,

(abst-ODE) is exactly controllable in time T if, and only if,

‖z1‖H ≤ C‖G∗T z
1‖H , ∀z1 ∈ H.

(abst-ODE) is null-controllable in time T if, and only if,

‖F∗T z
1‖H ≤ C‖G∗T z

1‖H , ∀z1 ∈ H.

(abst-ODE) is approximately controllable in time T if, and only if,

kerG∗T = {0} .

Let us compute G∗T .

Multiplying (abst-ODE) by z, solution to the adjoint system −
d

dt
z = A∗z, t ∈ (0,T ),

z(T ) = z1,

we obtain

y(T ) · z1 − y0 · z(0) =

∫ T

0

u(t) · B∗z(t) dt.

This shows that

F∗T : H −→ H

z1 7−→ z(0),

G∗T : H −→ L2(0,T ;U)

z1 7−→ B∗z.
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Part II

Presentation of the Fattorini-Hautus test
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Finite dimension

Let A ∈ Cn×n and B ∈ Cn×m.
d

dt
y = Ay + Bu, t ∈ (0,T ),

y(0) = y0 ∈ Cn.
(ODE)

Theorem (Fattorini (1966), Hautus (1969))

(ODE) is controllable if, and only if,

ker(λ− A∗) ∩ kerB∗ = {0} , ∀λ ∈ C. (Fatt)

Proof : Let us denote S(t) = etA. Let

N = {z ∈ Cn, B∗S(t)∗z = 0, t ∈ [0,T ]} .

We have to prove that N = {0}. Taking t = 0 we see that

N ⊂ kerB∗.

Taking the derivative of the identity B∗S(t)∗z = 0 we obtain

A∗N ⊂ N.

Thus, if N 6= {0}, there exist eigen-elements λ ∈ C et ξ ∈ Cn such that

ξ 6= 0, ξ ∈ ker(λ− A∗) ∩ kerB∗,

a contradiction with (Fatt).
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In�nite dimension

Let H and U be two complex Hilbert spaces. We assume that

A : D(A) ⊂ H −→ H generates C0-semigroup on H.

B ∈ L(U,H). 
d

dt
y = Ay + Bu, t ∈ (0,T ),

y(0) = y0 ∈ H.
(4)

Theorem (Fattorini (1966))

Assume that :

(i) A generates an analytic C0-semigroup.

(ii) σ(A) = {λk} has only isolated eigenvalues with �nite (alg.) multiplicities.

(iii) The family of generalized eigenvectors of A is complete in H.

Then, (4) is approximately controllable if, and only if,

ker(λ− A∗) ∩ kerB∗ = {0} , ∀λ ∈ C. (Fatt)

Remarks :

(i) implies that the approximate controllability does not depend on the time T .

(ii) is satis�ed if the resolvent of A is compact.

(iii) holds for perturbations of self-adjoint operators (Keldysh's theorem).
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Proof of the Fattorini-Hautus test

Let N = {z ∈ H, B∗S(t)∗z = 0 a.e. t ∈ (0,+∞)}. The Laplace transform gives

N =
{
z ∈ H, B∗(λ− A∗)−1z = 0, ∀λ ∈ ρ(A∗)

}
.

Let

Pk =
1

2πi

∫
|ξ−λk |=εk

(ξ − A)−1 dξ.

By (ii) we have dim ImP∗k < +∞ with

ImP∗k = ker(λk − A∗)mk .

Set
Nk,j = (λk − A∗)jP∗k N.

Since
Nk,mk

= {0} ,
we have

A∗Nk,mk−1 ⊂ Nk,mk−1.

Since
dimNk,mk−1 < +∞, Nk,mk−1 ⊂ kerB∗,

the Fattorini-Hautus test (Fatt) gives

Nk,mk−1 = {0} .

By iteration,
Nk,0 = P∗k N = {0} .

Since this is true for every k, by (iii) we obtain N = {0}.
G. Olive The Fattorini-Hautus test 11 / 48



"Best" necessary condition

If ∃T > 0 such that (A,B) is exactly controllable in time T , then

ker(λ− A∗) ∩ kerB∗ = {0} , ∀λ ∈ C.

If ∃T > 0 such that (A,B) is null-controllable in time T , then

ker(λ− A∗) ∩ kerB∗ = {0} , ∀λ ∈ C.

If ∃T > 0 such that (A,B) is approximatelly controllable in time T , then

ker(λ− A∗) ∩ kerB∗ = {0} , ∀λ ∈ C.

If (A,B) is rapidly stabilizable, then

ker(λ− A∗) ∩ kerB∗ = {0} , ∀λ ∈ C.
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Approximate controllability of the heat equation


∂ty −∆y = 1ωu in (0,T )× Ω,

y = 0 on (0,T )× ∂Ω,

y(0) = y0 in Ω.
(chal)


∂tz −∆z = 0 in (0,T )× Ω,

z = 0 on (0,T )× ∂Ω,

z(0) = z0 in Ω.

Theorem

(chal) is approximately controllable (in time T for every T > 0).

"Classical" proof : We write

z(t) =
+∞∑
k=1

αke
−λk tφk , (∆φk = −λkφk ).

Using the analyticity in time,

1ωz(t) =
+∞∑
k=1

αke
−λk t (1ωφk ) = 0, ∀t ∈ [0,+∞).

Multiplying by eλ1t and letting t → +∞ :

α11ωφ1 = 0 (rem : φ1 ∈ ker(−λ1 −∆) ∩ ker1ω).

Thus, α1 = 0. Then we iterate, we multiply by eλ2t to obtain α2 = 0, etc.
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Part III

Controllability of parabolic systems

Joint work with
Franck Boyer
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Toy model of parabolic systems

We will focus on the distributed controllability of the following 2× 2 system by 1 control :

∂ty1 −∆y1 = 1ωu in (0,T )× Ω,

∂ty2 −∆y2 = a21(x)y1 in (0,T )× Ω,

y1 = y2 = 0 on (0,T )× ∂Ω,

y1(0) = y01 , y2(0) = y02 , in Ω,

(syst)

where

(y1, y2) is the state and (y01 , y
0
2 ) ∈ L2(Ω)2 the initial data,

u ∈ L2(0,T ; L2(Ω)) is the control,

ω ⊂ Ω localises in space the control,

a21 ∈ L∞(Ω) couples the second equation to the �rst one.

Remark : The controllability of (syst) by 2 controls is easy (apply Carleman estimates to both
equations and add them up).

Theorem (de Teresa (2000))

Assume that there exist a nonempty open subset ω′ ⊂⊂ ω and ε > 0 such that

a21(x) ≥ ε, a.e. x ∈ ω′.

Then, (syst) is null-controllable in time T for every T > 0.

This hypothesis thus requires that ω ∩ supp a21 6= ∅.
G. Olive The Fattorini-Hautus test 15 / 48



Spectral properties

Let

A =

 ∆ 0

a21 ∆

 , D(A) = (H2(Ω) ∩ H1
0 (Ω))2.

• The adjoint of A is

A∗ =

∆ a21

0 ∆

 , D(A∗) = D(A).

• The spectrums are
σ(A) = σ(A∗) = {−λk}k∈N∗ .

• Denoting Pk the spectral projection of ∆ associated with −λk , the eigenspaces of A∗ are

ker(−λk − A∗) = Vk ⊕⊥Wk ,

where

Vk =


v

0

∣∣∣∣∣∣ v ∈ ker(−λk −∆)

 , Wk =


Sk (a21w)

w

∣∣∣∣∣∣w ∈ ker(−λk −∆) ∩ ker(Pka21)

 ,

where Sk : f ∈ kerPk 7−→ v ∈ kerPk with v the unique solution (in kerPk ) of (−λk −∆)v = f in Ω,

v = 0 on ∂Ω.
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• The spectrums are
σ(A) = σ(A∗) = {−λk}k∈N∗ .

• Denoting Pk the spectral projection of ∆ associated with −λk , the eigenspaces of A∗ are

ker(−λk − A∗) = Vk ⊕⊥Wk ,

where

Vk =


v

0

∣∣∣∣∣∣ v ∈ ker(−λk −∆)

 , Wk =


Sk (a21w)

w

∣∣∣∣∣∣w ∈ ker(−λk −∆) ∩ ker(Pka21)

 ,

where Sk : f ∈ kerPk 7−→ v ∈ kerPk with v the unique solution (in kerPk ) of (−λk −∆)v = f in Ω,

v = 0 on ∂Ω.
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Su�cient conditions

Theorem (Kavian and de Teresa (2010), Olive (2014))

Assume that
ker(−λk −∆) ∩ ker(Pka21) = {0} , ∀k ∈ N∗. (5)

Then, (syst) is approximately controllable.

• In general, (5) is not a necessary condition.
• (5) can be reformulated into

det

(∫
Ω
a21φk,iφk,j dx

)
1≤i,j≤mk

6= 0, ∀k ∈ N∗, (6)

where φk,1, . . . , φk,mk
is a basis of ker(−λk −∆).

• In the one-dimensional case Ω = (0, 1) (denoting φk,1 = φk since mk = 1)

Ik =

∫ 1

0

a21(φk )2 dx 6= 0, ∀k ∈ N∗.
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Proof of Olive (2014)

Let

B =

1ω
0

 , D(B) = L2(Ω)2.

By the Fattorini-Hautus test, the approximate controllability is equivalent to

ker(−λk − A∗) ∩ kerB∗ = {0} , ∀k ∈ N∗.

By assumption
Wk = {0} , ∀k ∈ N∗,

so that

ker(−λk − A∗) = Vk =


v

0

∣∣∣∣∣∣ v ∈ ker(−λk −∆)

 , ∀k ∈ N∗.

As a resultv

w

 ∈ ker(−λk − A∗) ∩ kerB∗ ⇐⇒ (w = 0 and v ∈ ker(−λk −∆) ∩ ker1ω) .

The unique continuation for a single equation then gives

v = 0.
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Reduction to a nonhomogeneous scalar elliptic problem

• In this part, we focus again on the approximate controllability.
• By the Fattorini-Hautus test, we have to study the property

−∆v − λkv = a21w in Ω

−∆w − λkw = 0 in Ω

u = 0 in ω

 =⇒ v = w = 0 in Ω.

We treat this problem as a nonhomogeneous scalar equation :

−∆v − λkv = F in Ω,

where F = a21w is known.
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Notations

From now on, Ω = (0, 1).

ω ⊂ Ω is still the control domain and ω is not necessarily connected.

φk denotes again the eigenfunctions of ∂xx associated with −λk .

Let C
(

Ω\ω
)
be the set of connected component of Ω\ω.

For every C ∈ C
(

Ω\ω
)
and F ∈ L2(Ω), let Mk (F ,C) be the vector of R2 de�ned by

Mk (F ,C) =

∫C Fφk dx

0

 if C ∩ ∂Ω 6= ∅, Mk (F ,C) =

∫C Fφk dx∫
C Fφ′k dx

 si C ∩ ∂Ω = ∅,

For instance,

ω is connected
=⇒ Mk (F ,C) =

∫C Fφk dx

0

 , ∀C ∈ C
(

Ω\ω
)
.

Finally, for every F ∈ L2(Ω) we de�ne the following family of vectors of R2 :

Mk (F , ω) = (Mk (F ,C))
C∈C

(
Ω\ω

) ∈ (R2)
C
(

Ω\ω
)
.

G. Olive The Fattorini-Hautus test 20 / 48



Notations

From now on, Ω = (0, 1).

ω ⊂ Ω is still the control domain and ω is not necessarily connected.

φk denotes again the eigenfunctions of ∂xx associated with −λk .

Let C
(

Ω\ω
)
be the set of connected component of Ω\ω.

For every C ∈ C
(

Ω\ω
)
and F ∈ L2(Ω), let Mk (F ,C) be the vector of R2 de�ned by

Mk (F ,C) =

∫C Fφk dx

0

 if C ∩ ∂Ω 6= ∅, Mk (F ,C) =

∫C Fφk dx∫
C Fφ′k dx

 si C ∩ ∂Ω = ∅,

For instance,

ω is connected
=⇒ Mk (F ,C) =

∫C Fφk dx

0

 , ∀C ∈ C
(

Ω\ω
)
.

Finally, for every F ∈ L2(Ω) we de�ne the following family of vectors of R2 :

Mk (F , ω) = (Mk (F ,C))
C∈C

(
Ω\ω

) ∈ (R2)
C
(

Ω\ω
)
.

G. Olive The Fattorini-Hautus test 20 / 48



Notations

From now on, Ω = (0, 1).

ω ⊂ Ω is still the control domain and ω is not necessarily connected.

φk denotes again the eigenfunctions of ∂xx associated with −λk .

Let C
(

Ω\ω
)
be the set of connected component of Ω\ω.

For every C ∈ C
(

Ω\ω
)
and F ∈ L2(Ω), let Mk (F ,C) be the vector of R2 de�ned by

Mk (F ,C) =

∫C Fφk dx

0

 if C ∩ ∂Ω 6= ∅, Mk (F ,C) =

∫C Fφk dx∫
C Fφ′k dx

 si C ∩ ∂Ω = ∅,

For instance,

ω is connected
=⇒ Mk (F ,C) =

∫C Fφk dx

0

 , ∀C ∈ C
(

Ω\ω
)
.

Finally, for every F ∈ L2(Ω) we de�ne the following family of vectors of R2 :

Mk (F , ω) = (Mk (F ,C))
C∈C

(
Ω\ω

) ∈ (R2)
C
(

Ω\ω
)
.

G. Olive The Fattorini-Hautus test 20 / 48



Notations

From now on, Ω = (0, 1).

ω ⊂ Ω is still the control domain and ω is not necessarily connected.

φk denotes again the eigenfunctions of ∂xx associated with −λk .

Let C
(

Ω\ω
)
be the set of connected component of Ω\ω.

For every C ∈ C
(

Ω\ω
)
and F ∈ L2(Ω), let Mk (F ,C) be the vector of R2 de�ned by

Mk (F ,C) =

∫C Fφk dx

0

 if C ∩ ∂Ω 6= ∅, Mk (F ,C) =

∫C Fφk dx∫
C Fφ′k dx

 si C ∩ ∂Ω = ∅,

For instance,

ω is connected
=⇒ Mk (F ,C) =

∫C Fφk dx

0

 , ∀C ∈ C
(

Ω\ω
)
.

Finally, for every F ∈ L2(Ω) we de�ne the following family of vectors of R2 :

Mk (F , ω) = (Mk (F ,C))
C∈C

(
Ω\ω

) ∈ (R2)
C
(

Ω\ω
)
.

G. Olive The Fattorini-Hautus test 20 / 48



Unique continuation for a 1D nonhomogeneous elliptic equation

Theorem (Boyer and Olive (2014))

Let k ∈ N∗ and F ∈ L2(Ω). We have

∃v ∈ H2(Ω) ∩ H1
0 (Ω),

{
−∂xxv − k2π2v = F in Ω,

v = 0 in ω,

if, and only if, {
F = 0 in ω,

Mk (F , ω) = 0.
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Application

Theorem (Boyer and Olive (2014))

Assume that ω ∩ supp a21 = ∅. Then, (syst) is approximately controllable if, and only if,

Mk (a21φk , ω) 6= 0, ∀k ∈ N∗.
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Simple conditions for the approximate controllability

Corollary (Boyer and Olive (2014))

Assume that ω ∩ supp a21 = ∅.
1 Su�cient condition : (syst) is approximately controllable if a21 satis�es

Ik =

∫ 1

0

a21(φk )2 dx 6= 0, ∀k ∈ N∗. (7)

2 Necessary condition : if (syst) is approximately controllable and ω, supp a21 are connected,
then (7) has to hold.

In general, (7) is not necessary.
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Role of the geometry of the control domain

Let us take a look at the particular case

a21(x) =

(
x −

1

2

)
1O(x), O = supp a21 =

(
1

4
,
3

4

)
.

Consider the two following geometric con�gurations for ω :

ω

supp a21

(a) ω is connected

ω ω

supp a21

(b) ω is not connected

(syst) is not approximately controllable in con�guration (a).

(syst) is approximately controllable in con�guration (b).
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Part IV

Stabilization of integro-di�erential equations

Joint work with
Jean-Michel Coron and Long Hu
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The equation

We consider
ut(t, x)− ux (t, x) =

∫ L

0

g(x , y)u(t, y) dy

u(t, L) = U(t)

u(0, x) = u0(x),

t ∈ (0,T ),

x ∈ (0, L),
(transp-g)

where :

T > 0 is the time of control and L > 0
is the length of the domain.

u0 is the initial data and u is the state.

g ∈ L2((0, L)× (0, L)) is a given kernel.

U ∈ L2(0,T ) is a boundary control.

x

t
0

L

T

U(t)

u0(x)
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An application : PDE-ODE systems

Example borrowed from Smyshlyaev and Krstic (2008) :
ut(t, x)− ux (t, x) = v(t, x),

u(t, L) = U(t),

u(0, x) = u0(x),


vxx (t, x)− v(t, x) = u(t, x),

vx (t, 0) = 0,

v(t, L) = V (t).

t ∈ (0,T ),

x ∈ (0, L).

Can we �nd U,V as functions of u, v such that, for some T > 0,

u(T , ·) = v(T , ·) = 0 ?

(remark : u(T , ·) = 0 =⇒ v(T , ·) = 0).

First, we solve the ODE :

v(t, x) =
cosh(x)

cosh(L)

(
V (t)−

∫ L

0

u(t, y) sinh(L− y) dy︸ ︷︷ ︸
Fredholm

)
+

∫ x

0

u(t, y) sinh(x − y) dy .︸ ︷︷ ︸
Volterra

If we have 2 controls : take V such that v(t, 0) = 0 : Volterra integral.

If we have 1 control (V = 0) : Fredholm integral.
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Notions of stabilization

Stability (U(t) = 0) : We say that (transp-g) is

exp. stable if the solution u with U(t) = 0 satis�es

‖u(t)‖L2 ≤ Mωe
−ωt‖u0‖L2 , ∀t ≥ 0,

for some ω > 0 and Mω > 0.

stable in �nite time T if the solution u with U(t) = 0 satis�es

u(t) = 0, ∀t ≥ T .

Stabilization (U(t) = Fu(t)) : We say that (transp-g) is

exp. stabilizable if (transp-g) with U(t) = Fωu(t) is exp. stable.

rap. stabilizable if this holds for every ω > 0.

stabilizable in �nite time T if (transp-g) with U(t) = Fu(t) is stable in �nite time T .
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Relations between controllability and stabilization

Stabilization :

Finite time stabilization =⇒ rap. stabilization =⇒ exp. stabilization.

Relations :

Finite time stabilization =⇒ (NC).

(NC) =⇒ rap. stabilization :
Wonham (1967) in �nite dimension
Datko (1971) for bounded control operators
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Controllability of the transport equation

Consider



ut(t, x)− ux (t, x) = 0,

u(t, L) = U(t),

u(0, x) = u0(x),

t ∈ (0,T ), x ∈ (0, L).

(transp-0)

x

t
0

L

T

U(t)

u0(x)

• Controllability : (transp-0) is (exactly, null or approximately) controllable in time T if, and only
if, T ≥ L.

• Stabilization : (transp-0) is stable in �nite time T = L.
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Abstract form of (transp-g)

Let us rewrite (transp-g) in the abstract form in L2(0, L) :
d

dt
u = Au + BU, t ∈ (0,T ),

u(0) = u0,

where the unbounded operator A is

Au = ux +

∫ L

0

g(·, y)u(y) dy ,

with domain D(A) =
{
u ∈ H1(0, L)

∣∣ u(L) = 0
}
, and B ∈ L(C,D(A∗)′) is

〈BU, z〉D(A∗)′,D(A∗) = Uz(L).

We can show that there exists a unique solution (by transposition)

u ∈ C0([0,T ]; L2(0, L)).
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References on the stabilization of (transp-g)

We know that :

In general, (transp-g) is not stable.

Indeed,

∀ g(x , y) = g large enough, ∃λ > 0, ker(λ− A) 6= {0} .

(transp-g) is stabilizable in �nite time T = L, if

g(x , y) = 0, x ≤ y (Volterra Integral

∫ x

0

dy).

Smyshlyaev and Krstic (2008).

(transp-g) is stabilizable in �nite time T = L, if
g is small enough.

� or �

g(x, y) = g2(y) with 1−
∫ L
0 g2(y)

(∫ L
y
e−λ0(x−y) dx

)
dy 6= 0, where λ0 =

∫ L
0 g2(y) dy .

Argomedo-Bribiesca and Krstic (2015).

G. Olive The Fattorini-Hautus test 32 / 48



References on the stabilization of (transp-g)

We know that :

In general, (transp-g) is not stable. Indeed,

∀ g(x , y) = g large enough, ∃λ > 0, ker(λ− A) 6= {0} .

(transp-g) is stabilizable in �nite time T = L, if

g(x , y) = 0, x ≤ y (Volterra Integral

∫ x

0

dy).

Smyshlyaev and Krstic (2008).

(transp-g) is stabilizable in �nite time T = L, if
g is small enough.

� or �

g(x, y) = g2(y) with 1−
∫ L
0 g2(y)

(∫ L
y
e−λ0(x−y) dx

)
dy 6= 0, where λ0 =

∫ L
0 g2(y) dy .

Argomedo-Bribiesca and Krstic (2015).

G. Olive The Fattorini-Hautus test 32 / 48



References on the stabilization of (transp-g)

We know that :

In general, (transp-g) is not stable. Indeed,

∀ g(x , y) = g large enough, ∃λ > 0, ker(λ− A) 6= {0} .

(transp-g) is stabilizable in �nite time T = L, if

g(x , y) = 0, x ≤ y (Volterra Integral

∫ x

0

dy).

Smyshlyaev and Krstic (2008).

(transp-g) is stabilizable in �nite time T = L, if
g is small enough.

� or �

g(x, y) = g2(y) with 1−
∫ L
0 g2(y)

(∫ L
y
e−λ0(x−y) dx

)
dy 6= 0, where λ0 =

∫ L
0 g2(y) dy .

Argomedo-Bribiesca and Krstic (2015).

G. Olive The Fattorini-Hautus test 32 / 48



References on the stabilization of (transp-g)

We know that :

In general, (transp-g) is not stable. Indeed,

∀ g(x , y) = g large enough, ∃λ > 0, ker(λ− A) 6= {0} .

(transp-g) is stabilizable in �nite time T = L, if

g(x , y) = 0, x ≤ y (Volterra Integral

∫ x

0

dy).

Smyshlyaev and Krstic (2008).

(transp-g) is stabilizable in �nite time T = L, if
g is small enough.

� or �

g(x, y) = g2(y) with 1−
∫ L
0 g2(y)

(∫ L
y
e−λ0(x−y) dx

)
dy 6= 0, where λ0 =

∫ L
0 g2(y) dy .

Argomedo-Bribiesca and Krstic (2015).
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Main result and consequences

Let us consider the problem :
Find θ ∈ H1(T+) ∩ H1(T−) such that :

θx (x , y) + θy (x , y) +

∫ L

0

g(y , σ)θ(x , σ)dσ = g(y , x),

θ(0, y) = 0, θ(L, y) = 0,

x , y ∈ (0, L).
(E)

Theorem (Coron, Hu and Olive (2016))

Assume that (E) has a solution. Then, (transp-g) is stabilizable in �nite time T = L if, and only
if,

ker(λ− A∗) ∩ kerB∗ = {0} , ∀λ ∈ C. (Fatt)

Assumption (E) is satis�ed in many cases : g small, g Volterra, g with separated variables,...

T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).

(E) and (Fatt) are di�erent.

In the �nite dimensional case, (Fatt) characterizes the rap. stabilization.

(Fatt) can fail for an arbitrary large number of λ.

Important corollary : all the notions of controllability/stabilizability are equivalent, under assumption (E).
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Basic idea of Backstepping

Find F and P such that
d

dt
u = Au + B (Fu) ,

u(0) = u0.
(initial system)

transformation P←−−−−−−−−−−


d

dt
w = A0w ,

w(0) = w0.

(target system)

where :

The target system is stable.

P is invertible.

Remark : Stability is preserved by change of variables.

In �nite dimension, we can take A0 = A− λ with λ > 0 large enough, Coron (2015).
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Choice of the target system

For equation (transp-g), we choose as target system
wt(t, x)− wx (t, x) = 0,

w(t, L) = 0,

w(0, x) = w0(x),

t ∈ (0,+∞), x ∈ (0, L), (targ)

which is stable in �nite time T = L :

w(t, ·) = 0, ∀t ≥ L.
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Choice of the transformation

We look for P : L2(0, L) −→ L2(0, L) in the form

P = Id− K ,

where, additionally, K is an integral operator with kernel k :

u(t, x) = w(t, x)−
∫ L

0

k(x , y)w(t, y)dy , (Fred-transfo)

Goal : Find k such that :

(Fred-transfo) maps (targ) into (transp-g).

(Fred-transfo) is invertible.

The feedback law F will then be given by the trace at x = L :

Fu = −
∫ L

0

k(L, y)(P−1u)(y) dy .

Fredholm transformations have been used in :

Coron and L�u (2014) for the rap. stabilization of a Korteweg-de Vries equation.

Coron and L�u (2015) for the rap. stabilization of a Kuramoto-Sivashinsky equ.

Argomedo-Bribiesca and Krstic (2015) for (transp-g).
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Formal derivation of the kernel equation

Di�erentiating (Fred-transfo) w.r.t t gives

ut(t, x) =wt(t, x)−
∫ L

0

k(x , y)wt(t, y)dy

=wx (t, x)−
∫ L

0

k(x , y)wy (t, y) dy

=wx (t, x) +

∫ L

0

ky (x , y)w(t, y) dy −HH
HHHH

k(x , L)w(t, L)︸ ︷︷ ︸
=0

+ k(x , 0)w(t, 0).

Di�erentiating (Fred-transfo) w.r.t x gives

−ux (t, x) = −wx (t, x) +

∫ L

0

kx (x , y)w(t, y)dy .

On the other hand,

−
∫ L

0

g(x , y)u(t, y) dy =

∫ L

0

(
−g(x , y) +

∫ L

0

g(x , σ)k(σ, y) dσ

)
w(t, y) dy .

As a result, k has to satisfy the following kernel equation :ky (x , y) + kx (x , y) +

∫ L

0

g(x , σ)k(σ, y)dσ = g(x , y),

k(x , 0) = 0.
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The equation of the adjoint kernel

Let us introduce the adjoint kernel

k∗(x , y) = k(y , x).

Then, k∗ has to verify
k∗x (x , y) + k∗y (x , y) +

∫ L

0

g(y , σ)k∗(x , σ)dσ = g(y , x),

k∗(x , 0) = U(x), (well posed for every U),

k∗(0, y) = 0,

x , y ∈ (0, L).

There is an in�nite number of choices for the kernel.

y

x
0

L

L

k∗(0, y)

�
�
�
�
�
�
�
�
�
�

U(x)

/ / / / / / / / / /

PROBLEM : not every corresponding (Fred-transfo) is invertible.
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Assumption (E)

With the assumption (E), we assume that there exists U such that the solution to
k∗x (x , y) + k∗y (x , y) +

∫ L

0

g(y , σ)k∗(x , σ)dσ = g(y , x),

k∗(x , 0) = U(x),

k∗(0, y) = 0,

x , y ∈ (0, L),

satis�es the �nal condition
k∗(L, ·) = 0.

We will prove that (Fred-transfo) is then invertible, if (Fatt) holds.
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Invertibility of the transformation

We want to prove that P = Id− K is invertible. Clearly,

Id− K is invertible ⇐⇒ Id− K∗ is invertible.

Since K∗ is compact, by the Fredholm alternative

Id− K∗ is invertible ⇐⇒ N = ker(Id− K∗) = {0} ,

and
dimN < +∞.

We can establish that :

N ⊂ kerB∗, thanks to the �nal condition k∗(L, ·) = 0.

N is stable by A∗, thanks to the kernel equation and N ⊂ kerB∗.

Since N is �nite dimensional, A∗|N has at least one eigenfunction : A∗ξ = λξ, ξ ∈ N, ξ 6= 0. Thus,

ξ ∈ ker(λ− A∗) ∩ kerB∗,

but
ξ 6= 0,

a contradiction with (Fatt).
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N ⊂ kerB∗, thanks to the �nal condition k∗(L, ·) = 0.

N is stable by A∗, thanks to the kernel equation and N ⊂ kerB∗.

Since N is �nite dimensional, A∗|N has at least one eigenfunction : A∗ξ = λξ, ξ ∈ N, ξ 6= 0. Thus,

ξ ∈ ker(λ− A∗) ∩ kerB∗,

but
ξ 6= 0,

a contradiction with (Fatt).
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Controllability implies stabilization

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T = L. Then, (E) holds and (Fatt) is satis�ed.

Proof :

Firstly, we solve the free nonhomogeneous equation :
px (x , y) + py (x , y) +

∫ L

0

g(y , σ)p(x , σ)dσ = g(y , x),

p(x , 0) = 0,

p(0, y) = 0,

x , y ∈ (0, L).

Secondly, we pick a control U such that
qx (x , y) + qy (x , y) +

∫ L

0

g(y , σ)q(x , σ)dσ = 0,

q(x , 0) = U(x),

q(0, y) = 0, q(L, y) = −p(L, y),

x , y ∈ (0, L).

Then, θ = p + q.

Remark : The null-controllability assumption is stronger than (Fatt).
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Example of g with separated variables

Proposition (Coron, Hu and Olive (2016))

Assume that
g(x , y) = g1(x)g2(y).

Then, (E) has a solution.

Moreover, (Fatt) is equivalent to∫ L

0

e−λxg1(x)

(∫ x

0

eλyg2(y) dy

)
dx 6= 1, ∀λ ∈ Z(g2),

where Z(g2) =
{
λ ∈ C :

∫ L
0 eλyg2(y) dy = 0

}
.
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Example of g with separated variables

In particular, if we assume
g(x , y) = g1(x),

then (Fatt) is equivalent to

1

λk

(
λ0 −

∫ L

0

e−λk xg1(x) dx

)
6= 1, ∀k 6= 0 (k ∈ Z), (8)

where λk = 2kπ
L

i for k 6= 0 and λ0 =
∫ L
0 g1(x) dx .

Moreover, (8) has to be checked only for a �nite number of k since

1

λk

(
λ0 −

∫ L

0

e−λk xg1(x) dx

)
−−−−−→
k→±∞

0.

On the other hand, (8) can fail for an arbitrary large number N of k. For instance :

g(x , y) = g1(x) =
2

L

N∑
k=1

2kπ

L
sin

(
2kπ

L
x

)
.
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Example of g with separated variables

Finally, if
g(x , y) = g2(y),

then (Fatt) is equivalent to
∫ L

0

eλ0yg2(y) dy 6= 0 si λ0 6= 0,

−
∫ L

0

y g2(y) dy 6= 1 si λ0 = 0,

where λ0 =
∫ L
0 g2(y) dy .

Equivalent to the condition of Argomedo-Bribiesca and Krstic (2015)
But the kernels are di�erent :

θ(x , y) =


∫ x

0

g2(y) dy , si (x , y) ∈ T+,

−
∫ L

x
g2(y) dy , si (x , y) ∈ T−,

6= θ(x , y) =

∫ x

0

e−λ0(x−y)g2(y) dy ,

(unless λ0 = 0).
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Part V

Perturbation theorems

Joint work with
Michel Duprez
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First perturbation theorem

Let H and U be two Hilbert spaces. Assume that

A0 : D(A0) ⊂ H −→ H generates a C0-semigroup on H.

B ∈ L(U,H) is bounded.

K ∈ L(H).

Let us form
AK = A0 + K , D(AK ) = D(A0).

Theorem (Duprez and Olive, 2016)

We assume that :

∃T∗ > 0 such that (A0,B) is exactly controllable in time T∗.

K is compact.

(AK ,B) is approximatively controllable in time T∗.

Then, (AK ,B) is exactly controllable in time T∗.

This is known as the uniqueness-compactness argument. Introduced in control theory by E.
Zuazua (1987).
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Second perturbation theorem

Theorem (Duprez and Olive, 2016)

We assume that :

∃T∗ > 0 such that (A0,B) is exactly controllable in time T∗.

K is compact.

(AK ,B) satis�es the Fattorini-Hautus test

ker(λ− A∗K ) ∩ kerB∗ = {0} , ∀λ ∈ C.

Then, (AK ,B) is exactly controllable in time T for every T > T∗.

Applications :

Controllability of integro-di�erential equations.

Controllability of systems of wave equations.

Controllability of parabolic systems (by transmutation).

etc.
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Thank you for your attention !
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