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Background on controllability

The Fattorini-Hautus test




System description

Let H, U be two complex Hilbert spaces. Consider

d
Ly = Ay+Bu, te(0,T)

dat” Y ©.7) (abst-ODE)
y(0) = o,

where
@ T > 0 is the time of control.

o y is the state.
o y0 is the initial data.

A: D(A) C H— H generates a Co-semigroup (5(t))¢>o-

e uc L2(O, T; U) is the control.

@ B € L(U,H) is a bounded linear operator.
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System description

Let H, U be two complex Hilbert spaces. Consider

d

— = Ay+Bu, te(0,T),

dat” Y ©.7) (abst-ODE)
y(0) = O,

where
@ T > 0 is the time of control.

o y is the state.

o y0 is the initial data.

e A: D(A) C H— H generates a Gyo-semigroup (5(t))¢>o-
e u € L2(0, T;U) is the control.

@ B € L(U,H) is a bounded linear operator.

Well-posedness : For every y0 € H and u € L2(0, T; U), there exists a unique solution
t
y(t) = 5(1)y° +/ S(t —s)Bu(s)ds, Vtelo,T].
0
Note that y € C°([0, T]; H) with

(Ol < € (Iy°lln + lulliz0,7.0) - VE€ [0, T]. (cont-dep)
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Notions of controllability

y(T;0)

<

Ficure — Uncontrolled trajectory

o y0 : initial state, y! : target,
o y(T;u): value of the solution to (abst-ODE) at time T with control wu.
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Notions of controllability

y(T;0)
yr=y(T;u)
yO

Ficure — Trajectory controlled exactly

o y0 : initial state, yl: target,

@ y(T;u): value of the solution to (abst-ODE) at time T with control u.

Definition

(abst-ODE) is exactly controllable in time T if

vyl yt € H,Jue (0, T; U),  y(T)=y
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Notions of controllability

y(T;0)
0=y(T;u)
30

Ficure — Trajectory controlled to 0

o y0 : initial state, yl: target,

@ y(T;u): value of the solution to (abst-ODE) at time T with control u.

Definition

(abst-ODE) is null-controllable in time T if

vy® € H, Ju e L?(0, T; U),  y(T)=0.
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Notions of controllability

y(T;0)

Ficure —  Trajectory controlled approximately

o y0 : initial state, yl: target,

@ y(T;u): value of the solution to (abst-ODE) at time T with control u.

Definition

(abst-ODE) is approximately controllable in time T if

Vo ¥yt € H,¥e>0,3ue 20, T;U), |Iy(T)—y*n<e.
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Reformulation

Let Fr : H — H %7 = Ay, te(0,7T),
ye = ¥(T), y0) = »°
and
Gr : L%0, T;U) — H %y = Ay+Bu, te€(0,7),
u — y(T), y0) = o

so that y(T) = Fry® + Gru.
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Reformulation

Let Fr : H — H %7 = Ay, te(0,7T),
ye = ¥(T), y0) = »°
and
Gr : L%0, T;U) — H %y = Ay+Bu, te€(0,7),
u — y(T), y0) = o

so that y(T) = Fry® + Gru. Therefore,
o (abst-ODE) is exactly controllable in time T if, and only if,

Im Gt = H. (1)
o (abst-ODE) is null-controllable in time T if, and only if,
Im Fr C Im G7. (2)
o (abst-ODE) is approximately controllable in time T if, and only if,

Im Gy = H. 3)
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Reformulation

Let Fr : H — H %7 = Ay, te(0,7T),
ye = ¥(T), y0) = »°
and
Gr : L%0, T;U) — H %y = Ay+Bu, te€(0,7),
u — y(T), y0) = o

so that y(T) = Fry® + Gru. Therefore,
o (abst-ODE) is exactly controllable in time T if, and only if,

Im Gt = H. (1)
o (abst-ODE) is null-controllable in time T if, and only if,
Im Fr C Im G7. (2)
o (abst-ODE) is approximately controllable in time T if, and only if,
Im GT = H. (3)

Remark : If dim H < 400 (in particular A € £(H)), then all these notions are equivalent :
o (1) < (2) since Im Fr = H.
o (1) <= (3) since dimIm G < +oo.
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By (cont-dep) we have Fr € £(H) and G € L£(L2(0, T; U), H). Thus,
o (abst-ODE) is exactly controllable in time T if, and only if,

Iz ln < ClGT2H [, V2" € H.
o (abst-ODE) is null-controllable in time T if, and only if,
IFF2 0 < CIGT2|m, V2! € H.
o (abst-ODE) is approximately controllable in time T if, and only if,
ker G; = {0}.

Let us compute G7.
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By (cont-dep) we have Fr € £(H) and G € L£(L2(0, T; U), H). Thus,
o (abst-ODE) is exactly controllable in time T if, and only if,

240 < CliGT2 I, V2 € H.
o (abst-ODE) is null-controllable in time T if, and only if,
IF32 0 < CIIGF2Y |n, VZ' € H.

o (abst-ODE) is approximately controllable in time T if, and only if,

ker G; = {0}.
Let us compute GJ. Multiplying (abst-ODE) by z, solution to the adjoint system
d
- = A*z, te€(0,T),
e z (0, 7)
z2(T) = 2,

we obtain .
ATyt =y x(0) = [ ule): B x(e) e

G. Olive The Fattorini-Hautus test 7 / 48



By (cont-dep) we have Fr € £(H) and G € L£(L2(0, T; U), H). Thus,
o (abst-ODE) is exactly controllable in time T if, and only if,

240 < CliGT2 I, V2 € H.
o (abst-ODE) is null-controllable in time T if, and only if,
IF32 0 < CIIGF2Y |n, VZ' € H.

o (abst-ODE) is approximately controllable in time T if, and only if,

ker G; = {0}.
Let us compute GJ. Multiplying (abst-ODE) by z, solution to the adjoint system
d
- = A*z, te€(0,T),
e z (0, 7)
z2(T) = 2,

we obtain .
y(T)-z28 —y%-2(0) = / u(t) - B*z(t) dt.
0
This shows that
Fx : H — H Gy : H — L%2(0, T; U)

1 — z(0), P — B*z.
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Part I

Presentation of the Fattorini-Hautus test

The Fattorini-Hautus test




Let A€ C"™ " and B € C"™*™M,

d
Ly = Ay+Bu te(0,T),
at” Y ©.7 (ODE)
y(0) = ylecCm

Theorem (Fattorini (1966), Hautus (1969))

(ODE) is controllable if, and only if,

ker(A — A*)Nker B* = {0}, VAeC. (Fatt)
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Let A€ C"™ " and B € C"™*™M,

d
Ly = Ay+Bu te(0,T),
at” v+ B ©.7 (ODE)
y(0) = ylecCm

Theorem (Fattorini (1966), Hautus (1969))

(ODE) is controllable if, and only if,

ker(A — A*)Nker B* = {0}, VAeC. (Fatt)

Proof : Let us denote S(t) = e”. Let
N={zeC", B*S(t)*z=0, tel0,T]}.

We have to prove that N = {0}. Taking t = 0 we see that

N C ker B*.
Taking the derivative of the identity B*S(t)*z = 0 we obtain

A*N C N.
Thus, if N # {0}, there exist eigen-elements A € C et £ € C" such that

€#0, €€ker(A— A*)Nker B*,

a contradiction with (Fatt). O
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Infinite dimension

Let H and U be two complex Hilbert spaces. We assume that
o A: D(A) C H— H generates Co-semigroup on H.

e Be L(U,H).
d Ay +B te(0,T)
e = u, ) )
a” — o)
y(0) = yPeH.

Theorem (Fattorini (1966))

Assume that :

(i) A generates an analytic Co-semigroup.
(it) a(A) = {Ak} has only isolated eigenvalues with finite (alg.) multiplicities.
(iii) The family of generalized eigenvectors of A is complete in H.

Then, (4) is approximately controllable if, and only ff,

ker(A — A*)Nker B* = {0}, VXeC. (Fatt)

Remarks :

o (i) implies that the approximate controllability does not depend on the time T.
o (ii) is satisfied if the resolvent of A is compact.
o (iii) holds for perturbations of self-adjoint operators (Keldysh’s theorem).
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Proof of the Fattorini-Hautus test

Let N={z € H, B*S(t)*z=0a.e. t € (0,400)}. The Laplace transform gives
N={zeH, B*(A-A")"lz=0, VA€ pA*)}.

Let 1
Py = — (6 —A)"lde.
21 Jjg— Ay |=e

By (ii) we have dimIm P} < +o0 with
Im P} = ker(\y — A*)™k.

Set
Nij = (% — A*YPEN.
Since
Nk,mk = {0} 3
we have
A*Nk,mk—l C Nk,mk—l-
Since

dim Ny m, —1 < 400, Ny m, 1 C ker B*,
the Fattorini-Hautus test (Fatt) gives
Ni,m,—1 = {0} .
By iteration,
Nio = PcN ={0}.
Since this is true for every k, by (iii) we obtain N = {0}. O
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""Best" necessary condition

e If 3T > 0 such that (A, B) is exactly controllable in time T, then

ker(A— A*)Nker B* = {0}, VvieC.
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""Best" necessary condition

e If 3T > 0 such that (A, B) is exactly controllable in time T, then
ker(A— A*)Nker B* = {0}, VvieC.
o If 3T > 0 such that (A, B) is null-controllable in time T, then

ker(A — A*)Nker B* = {0}, VvieC.
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""Best" necessary condition

e If 3T > 0 such that (A, B) is exactly controllable in time T, then
ker(A— A*)Nker B* = {0}, VvieC.

o If 3T > 0 such that (A, B) is null-controllable in time T, then
ker(A — A*)Nker B* = {0}, VvieC.

e If 3T > 0 such that (A, B) is approximatelly controllable in time T, then

ker(A — A*)Nker B* = {0}, VAeC.
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""Best" necessary condition

e If 3T > 0 such that (A, B) is exactly controllable in time T, then
ker(A— A*)Nker B* = {0}, VvieC.

o If 3T > 0 such that (A, B) is null-controllable in time T, then
ker(A — A*)Nker B* = {0}, VvieC.

e If 3T > 0 such that (A, B) is approximatelly controllable in time T, then
ker(A — A*)Nker B* = {0}, VAeC.

o If (A, B) is rapidly stabilizable, then
ker(A — A*)Nker B* = {0}, VxeC.
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Approximate controllability of the heat equation

Oty —Ay=1,u in(0,T)xQ,
y=0 on (0, T) x 09,
y(0) =y° in Q.

Orz—NAz=0 in (0, T) xQ,
z=0 on (0, T) x 09,

(chal) 2(0)=2% inQ.

(chal) is approximately controllable (in time T for every T > 0).
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Approximate controllability of the heat equation

Oty — Ay =1,u  in (0,T) x Q,

Orz—NAz=0 in (0, T) xQ,
y=0 on (0, T) x 09,

z=0 on (0, T) x 09,

0)=)° in Q. _ .
y y (chal) z(0) = 20 in Q.

(chal) is approximately controllable (in time T for every T > 0).

"Classical" proof : We write

+o00o
2(t) =D ke My,  (Ddr = —Mdi)-

k=1

Using the analyticity in time,
1,2(t) = Zake f(1wgk) =0, Vte€[0,+c0).

Multiplying by e*1t and letting t — 400 :
a1ludr =0 (rem: @1 € ker(—A1 — A) Nker 1,,).

Aot

Thus, ;3 = 0. Then we iterate, we multiply by e to obtain as = 0, etc.
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Part |lI

Controllability of parabolic systems

Joint work with
FraNck BovYER

The Fattorini-Hautus test




Toy model of parabolic systems

We will focus on the distributed controllability of the following 2 x 2 system by 1 control :

Oty1 — Ayy = 1gu in (0,T) x Q,
atyz — Ayz = azl(X)y]_ in (0, T) X Q,

(syst)
Y1 :y2:0 on (O,T)Xaﬂ,

vi(0)=yP, »(0)=yF, inQ,

where

o (y1,y2) is the state and (y?,y9) € L2(Q)? the initial data,

e u€ L2(0,T;L2(Q)) is the control,

e w C € localises in space the control,

@ ax1 € L°°(Q) couples the second equation to the first one.
Remark : The controllability of (syst) by 2 controls is easy (apply Carleman estimates to both
equations and add them up).

Theorem (de Teresa (2000))

Assume that there exist a nonempty open subset w’ CC w and € > 0 such that
a1(x) >, aexew.

Then, (syst) is null-controllable in time T for every T > 0.

This hypothesis thus requires that w N supp a1 # 0.
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Spectral properties

Let
A= (A Z) | D(A) = (HA(Q) N HE(Q))%.

e The adjoint of A is

(A azl)
A* = ., D(A*) = D(A).
A
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Spectral properties

Let
A= (A Z) | D(A) = (HA(Q) N HE(Q))%.

e The adjoint of A is

(A azl)
A* = ., D(A*) = D(A).
A

o(A)=o(A") = {_)‘k}keN* .

e The spectrums are
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Spectral properties

Let
A= (A Z) | D(A) = (HA(Q) N HE(Q))%.

e The adjoint of A is

(A 321)
A* = ., D(A*) = D(A).
A

o(A)=o(A") = {_)‘k}keN* .

e The spectrums are

e Denoting Py the spectral projection of A associated with —)\,, the eigenspaces of A* are
ker(—A — A*) = Vi @ W,

where

Vi = { (;) v € ker(—Ax — A)} , W= { (Sk(anW)> w € ker(—Ax —A)N ker(Pkan)} )

where Sy : f € ker P, — v € ker P, with v the unique solution (in ker Py) of

(=X —A)v =f inQ,
v =0 ondQ.
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Sufficient conditions

Theorem (Kavian and de Teresa (2010), Olive (2014))

Assume that
ker(—)\k = A) n ker(Pkazl) = {0} , VkeN*. (5)

Then, (syst) is approximately controllable.

o In general, (5) is not a necessary condition.
e (5) can be reformulated into

det (/ a210k,iPk.j dX) #0, VkeN~, (6)
Q 1<ij<m

where ¢y 1,..., Pk m, is a basis of ker(=A, — A).
o In the one-dimensional case Q = (0, 1) (denoting ¢ 1 = ¢« since my = 1)

1
zk=/ a1 (dk)2 dx £0, Vk € N*.
0
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Proof of Olive (2014)

Let

B= ﬂo“’ . D(B) = L3(Q)>.

By the Fattorini-Hautus test, the approximate controllability is equivalent to
ker(=X\x — A*) Nker B* = {0}, VkeN".

By assumption
Wy = {0}, VkeN~,

so that

v
ker(—)\k — A*) =V = v E ker(—)\k — A) , VkeN*.
0
As a result

e ker(—Ax — A" )NkerB* <= (w=0 and v €ker(—Ax— A)Nkerly).
w

The unique continuation for a single equation then gives

v=0.
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Reduction to a nonhomogeneous scalar elliptic problem

e In this part, we focus again on the approximate controllability.
e By the Fattorini-Hautus test, we have to study the property

—AV—)\kV2321W in Q
—Aw —\w =0 inQ) —=v=w=0in Q.

u=20 inw

We treat this problem as a nonhomogeneous scalar equation :
—Av— Xv=F inQ,

where F = a1 w is known.
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e From now on, Q = (0,1).
o w C Q is still the control domain and w is not necessarily connected.
o ¢y denotes again the eigenfunctions of 0.« associated with —\.
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e From now on, Q = (0,1).
o w C Q is still the control domain and w is not necessarily connected.
o ¢y denotes again the eigenfunctions of 0.« associated with —\.

o LetC (Q\w) be the set of connected component of Q\w.
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e From now on, Q = (0,1).
o w C Q is still the control domain and w is not necessarily connected.
o ¢y denotes again the eigenfunctions of 0.« associated with —\.

o LetC (Q\w) be the set of connected component of Q\w.

o Forevery CeC (Q\w) and F € L2(Q), let M (F, C) be the vector of R? defined by

Foy d Foy d
My (F, C) = Je Fowdx ifCNoQ#£0, M (F,C)= Je Fowax si CNoQ =0,
0 [ Fe, dx
For instance,
: Féy d __
w is connected e M (F,C) = (fc Pk x) Cvcee <Q\w) .
0
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e From now on, Q = (0,1).
o w C Q is still the control domain and w is not necessarily connected.
o ¢y denotes again the eigenfunctions of 0.« associated with —\.

o LetC (Q\w) be the set of connected component of Q\w.

o Forevery CeC (Q\w) and F € L2(Q), let M (F, C) be the vector of R? defined by

Foy d Foy d
My (F, C) = Je Fowdx ifCNoQ#£0, M (F,C)= Je Fowax si CNoQ =0,
0 [ Fe, dx
For instance,
: Féy d __
w is connected e M (F,C) = (fc Pk x) Cvcee <Q\w) .
0

o Finally, for every F € L?(Q) we define the following family of vectors of R? :

Mk (F,UJ) = (Mk (F, C)) ) c (Rz)c(m)

Cec(m
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Unique continuation for a 1D nonhomogeneous elliptic equation

Theorem (Boyer and Olive (2014))
Let k € N* and F € L?(Q). We have

—Oxv — K272y = F  inQ,

Jv € H?(Q) N Hy (), { V=0 inw

if, and only if,
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Application

Theorem (Boyer and Olive (2014))

Assume that w N supp a1 = 0. Then, (syst) is approximately controllable if, and only if,

My (a21¢x,w) #0, Vk € N*.
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Simple conditions for the approximate controllability

Corollary (Boyer and Olive (2014))

Assume that w Nsupp az1 = 0.

Q Sufficient condition : (syst) is approximately controllable if ayy satisfies

1
I = /0 a21(pi)?dx #0, Vk € N*. (7

@ Necessary condition : if (syst) is approximately controllable and w,supp a»1 are connected,
then (7) has to hold.

In general, (7) is not necessary.
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Role of the geometry of the control domain

Let us take a look at the particular case

1
az1(x) = (X - 5) lo(x), O =suppaz =

I
7/
=
~lw
N—

Consider the two following geometric configurations for w :

w

sSupp azi

(a) w is connected
w w
Supp azi
(b) w is not connected

o (syst) is not approximately controllable in configuration (a).
o (syst) is approximately controllable in configuration (b).
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Stabilization of integro-differential equations

Joint work with
JEAN-MIicHEL CoroN AND Long Hu
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We consider

L
et %) — (%) = /0 g(x,y)u(t,y) dy

te (0, 7),
_ ©.7) (transp-g)
u(t,L)y = U(t) x€(0,L),
u(0,x) = u%(x),
where : X
@ T > 0 is the time of control and L > 0 L u(t)
is the length of the domain.
0 . .
o u” is the initial data and u is the state. w0 (x)
e g € L2((0,L) x (0,L)) is a given kernel.
e U € L2(0,T) is a boundary control. 0 T t
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An application : PDE-ODE systems

Example borrowed from Smyshlyaev and Krstic (2008) :

ue(t, x) — ux(t,x = v(t, x), vxx (t, x) — v(t, x = u(t,x),
(t.x) = ux(£,) = v(t,x) () = vt =u(ex). o
u(t,L) = U(t), vx(t,0) =0,
x € (0,L).
u(0,x) = uO(x), v(t,L) = V().

Can we find U, V as functions of u, v such that, for some T > 0,
U(Tv'):V(Tv’):O ?

(remark : u(T,:)=0= v(T,:)=0).
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An application : PDE-ODE systems

Example borrowed from Smyshlyaev and Krstic (2008) :

ue(t, x) — ux(t,x = v(t, x), vxx (t, x) — v(t, x = u(t,x),
(t.x) = ux(£,) = v(t,x) () = vt =u(ex). o
u(t,L) = U(t), vx(t,0) =0,
x € (0,L).
u(0,x) = uO(x), v(t,L) = V().

Can we find U, V as functions of u, v such that, for some T > 0,
U(Tv'):V(Tv’):O ?
(remark : u(T,-) =0 = v(T,-) =0).
First, we solve the ODE :

_cosh(x)
v(tx) = cosh(L)

L X
<V(t) —/0 u(t,y)sinh(L —y) dy) +/0 u(t,y)sinh(x — y) dy.

Fredholm Volterra
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An application : PDE-ODE systems

Example borrowed from Smyshlyaev and Krstic (2008) :

ue(t, x) — ux(t,x) = v(t,x), Vi (t, x) — v(t,x) = u(t,x),
te(0,T),
u(t,L) = U(t), vx(t,0) =0,
x € (0,L).
u(0,x) = uO(x), v(t,L) = V().
Can we find U, V as functions of u, v such that, for some T > 0,
U(Tv'):V(Tv’):O ?
(remark : u(T,-) =0 = v(T,-) =0).
First, we solve the ODE :
h L X
v(t,x) = ZZZhEg <V(t) _/0 u(t,y) sinh(L—y)dy) +/0 u(t. y)sinh(x — y) dy.

Fredholm Volterra

o If we have 2 controls : take V such that v(t,0) = 0 : Volterra integral.
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(remark : u(T,-) =0 = v(T,-) =0).
First, we solve the ODE :
h L X
v(t,x) = ZZZhEg <V(t) _/0 u(t,y) sinh(L—y)dy) +/0 u(t. y)sinh(x — y) dy.

Fredholm Volterra

o If we have 2 controls : take V such that v(t,0) = 0 : Volterra integral.
o If we have 1 control (V = 0) : Fredholm integral.
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Notions of stabilization

Stability (U(t) = 0) : We say that (transp-g) is
o exp. stable if the solution u with U(t) = 0 satisfies
lu(t)ll2 < Muwe™“[[ell2, VE>0,
for some w > 0 and M, > 0.
o stable in finite time T if the solution u with U(t) = 0 satisfies

u(t)=0, Vt>T.
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Stability (U(t) = 0) : We say that (transp-g) is
o exp. stable if the solution u with U(t) = 0 satisfies
lu(t)ll2 < Muwe™“[[ell2, VE>0,
for some w > 0 and M, > 0.
o stable in finite time T if the solution u with U(t) = 0 satisfies

u(t)=0, Vt>T.

Stabilization (U(t) = Fu(t)) : We say that (transp-g) is

@ exp. stabilizable if (transp-g) with U(t) = F,u(t) is exp. stable.
@ rap. stabilizable if this holds for every w > 0.

o stabilizable in finite time T if (transp-g) with U(t) = Fu(t) is stable in finite time T.
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Relations between controllability and stabilization

Stabilization :

o Finite time stabilization = rap. stabilization =—> exp. stabilization.

Relations :
o Finite time stabilization = (NC).

@ (NC) = rap. stabilization :

e Wonham (1967) in finite dimension
o Datko (1971) for bounded control operators

G. Olive The Fattorini-Hautus test 29 / 48



Controllability of the transport equation

Consider
X
u(t)
ue(t, x) — ux(t,x) =0,
u(t, L) = U(t), 0(x)
uO(x
u(0, x) = u0(x), (transp-0)
te(0,T), xe(0,L). ;
0 T
e Controllability : (transp-0) is (exactly, null or approximately) controllable in time T if, and only

if, T>L.

o Stabilization : (transp-0) is stable in finite time T = L.

G. Olive The Fattorini-Hautus test 30 / 48



Abstract form of (transp-g)

Let us rewrite (transp-g) in the abstract form in L2(0, L) :

dt

d
—u= Au+BU, te(0,T),
u(0) = uo,
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Abstract form of (transp-g)

Let us rewrite (transp-g) in the abstract form in L2(0, L) :

dt

d
—u= Au+BU, te(0,T),
u(0) = uo,

where the unbounded operator A is

L
Au = uy +/0 g(- y)uly)dy,
with domain D(A) = {u € H'(0,L) | u(L) = 0}, and B € L(C, D(A")') is

(BU, 2) p(a=y p(a=) = Uz(L).
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Abstract form of (transp-g)

Let us rewrite (transp-g) in the abstract form in L2(0, L) :

dt

d
—u= Au+BU, te(0,T),
u(0) = uo,

where the unbounded operator A is

L
Au = uy +/0 g(- y)uly)dy,
with domain D(A) = {u € H'(0,L) | u(L) = 0}, and B € L(C, D(A")') is

(BU, 2) p(a=y p(a=) = Uz(L).

We can show that there exists a unique solution (by transposition)

u e C°([o, T]; L2(0, L)).
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References on the stabilization of (transp-g)

We know that :
o In general, (transp-g) is not stable.
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References on the stabilization of (transp-g)

We know that :
o In general, (transp-g) is not stable. Indeed,

Vg(x,y) = g large enough, x>0, ker(A—A)#{0}.

@ (transp-g) is stabilizable in finite time T = L, if
X
g(x,y) =0, x<y (Volterra Integral/ dy).
0

Smyshlyaev and Krstic (2008).
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References on the stabilization of (transp-g)

We know that :
o In general, (transp-g) is not stable. Indeed,

Vg(x,y) = g large enough, x>0, ker(A—A)#{0}.

@ (transp-g) is stabilizable in finite time T = L, if
X
g(x,y) =0, x<y (Volterra Integral/ dy).
0

Smyshlyaev and Krstic (2008).

o (transp-g) is stabilizable in finite time T = L, if
e g is small enough.
—or—
o g(x,y) = &(y) with 1 — [Lga(y) (fy‘ e Mokx=y) dx) dy # 0, where o = [ ga(y) dy.
Argomedo-Bribiesca and Krstic (2015).
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Main result and consequences

Let us consider the problem :

Find 0 € H*(74) N H(7-) such that :

L
Ox(x,y) + 0y (x,y) +/0 g(y,0)0(x,0)do = g(y, x), .y € (0,L).
0(0,y) =0, 0(Ly)=0,

Theorem (Coron, Hu and Olive (2016))

Assume that (E) has a solution. Then, (transp-g) is stabilizable in finite time T = L if, and only
if,
ker(A — A*)Nker B* = {0}, VXeC. (Fatt)
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@ Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
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if,
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@ Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
@ T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).

@ (E) and (Fatt) are different.
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L
0y + 0,0 + | B )de =BG oy (E)
0(0,y) =0, 0(Ly)=0,

Theorem (Coron, Hu and Olive (2016))

Assume that (E) has a solution. Then, (transp-g) is stabilizable in finite time T = L if, and only
if,
ker(A — A*)Nker B* = {0}, VXeC. (Fatt)

@ Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...

@ T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).

(E) and (Fatt) are different.

@ In the finite dimensional case, (Fatt) characterizes the rap. stabilization.
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@ (Fatt) can fail for an arbitrary large number of A.
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Main result and consequences

Let us consider the problem :

Find 0 € H*(74) N H(7-) such that :

L
0y + 0,0 + | B )de =BG oy (E)
0(0,y) =0, 0(Ly)=0,

Theorem (Coron, Hu and Olive (2016))

Assume that (E) has a solution. Then, (transp-g) is stabilizable in finite time T = L if, and only
if,
ker(A — A*)Nker B* = {0}, VXeC. (Fatt)

@ Assumption (E) is satisfied in many cases : g small, g Volterra, g with separated variables,...
@ T = L is the optimal time of control : for g = 0 (transp-g) is (transp-0).

@ (E) and (Fatt) are different.

@ In the finite dimensional case, (Fatt) characterizes the rap. stabilization.

@ (Fatt) can fail for an arbitrary large number of A.

@ Important corollary : all the notions of controllability/stabilizability are equivalent, under assumption (E).
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Basic idea of Backstepping

Find F and P such that
d d

Eu = Au+B (FU) ’ transformation P EW = Aow,
u(0) = uO. w(0) = wP.
(initial system) (target system)

where :
@ The target system is stable.
@ P is invertible.
Remark : Stability is preserved by change of variables.
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Basic idea of Backstepping

Find F and P such that
d d

Eu = Au+B (FU) ’ transformation P EW = Aow,
u(0) = uO. w(0) = wP.
(initial system) (target system)

where :
@ The target system is stable.
@ P is invertible.
Remark : Stability is preserved by change of variables.

In finite dimension, we can take Ag = A — X with A > 0 large enough, Coron (2015).
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Choice of the target system

For equation (transp-g), we choose as target system

we(t, x) — wi(t,x) = 0,
w(t,L)= 0, t € (0,+00), x € (0,L), (targ)
w(0,x) = wP(x),

which is stable in finite time T = L :

w(t,-) =0, Vt>L
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Choice of the transformation

We look for P : L2(0,L) — L2(0, L) in the form
P=1d - K,

where, additionally, K is an integral operator with kernel k :

L
u(t,x) = W(t,X)f/‘o K(x, y)w(t, y)dy, (Fred-transfo)
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Choice of the transformation

We look for P : L2(0,L) — L2(0, L) in the form
P=1d - K,

where, additionally, K is an integral operator with kernel k :

L
u(t,x) = W(t,X)f/‘o K(x, y)w(t, y)dy, (Fred-transfo)

Goal : Find k such that :
o (Fred-transfo) maps (targ) into (transp-g).

o (Fred-transfo) is invertible.
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Choice of the transformation

We look for P : L2(0,L) — L2(0, L) in the form
P=1d - K,

where, additionally, K is an integral operator with kernel k :
L
u(t,x) = W(t,X)f/‘ K(x, y)w(t, y)dy, (Fred-transfo)
0

Goal : Find k such that :
o (Fred-transfo) maps (targ) into (transp-g).
o (Fred-transfo) is invertible.

The feedback law F will then be given by the trace at x =L :

L
Fu— /0 k(L y)(P~u)(y) dy.
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Choice of the transformation

We look for P : L2(0,L) — L2(0, L) in the form
P=1d - K,

where, additionally, K is an integral operator with kernel k :
L
u(t,x) = W(t,X)f/‘ K(x, y)w(t, y)dy, (Fred-transfo)
0

Goal : Find k such that :
o (Fred-transfo) maps (targ) into (transp-g).
o (Fred-transfo) is invertible.

The feedback law F will then be given by the trace at x =L :
t 1
Fu=— [ KLP 00 o
0

Fredholm transformations have been used in :
o Coron and Lii (2014) for the rap. stabilization of a Korteweg-de Vries equation.
@ Coron and Lii (2015) for the rap. stabilization of a Kuramoto-Sivashinsky equ.
e Argomedo-Bribiesca and Krstic (2015) for (transp-g).
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Formal derivation of the kernel equation

Differentiating (Fred-transfo) w.r.t t gives

L
et %) =we(t, ) — /0 K(x, y)we(t, y)dy

L
=mmﬂfAkMHm@ﬂW

L
=wx(t,x) —i—/o ky(x,y)w(t,y)dy —W%— k(x,0)w(t,0).
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L
et %) =we(t, ) — /0 K(x, y)we(t, y)dy

L
=mmﬂfAkMHm@ﬂW

L
=wx(t,x) —i—/o ky(x,y)w(t,y)dy —W%— k(x,0)w(t,0).

Differentiating (Fred-transfo) w.r.t x gives

L
—ux(t,x) = —wx(t, x) +./0 kx(x, y)w(t,y)dy.
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Formal derivation of the kernel equation

Differentiating (Fred-transfo) w.r.t t gives

L
et %) =we(t, ) — /0 K(x, y)we(t, y)dy

L
=mmﬂfAkMHm@ﬂW

L
=wx(t,x) —i—/o ky(x,y)w(t,y)dy —W%— k(x,0)w(t,0).

Differentiating (Fred-transfo) w.r.t x gives
L
—u(tx) = w60+ [y w(ey)dy.
0
On the other hand,

[ stonutenrar= [ (~gten)+ [ alokio)do wie ) g
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Formal derivation of the kernel equation

Differentiating (Fred-transfo) w.r.t t gives

L
et %) =we(t, ) — /0 K(x, y)we(t, y)dy

L
=wx(t,x)f/0 k(x, y)wy (t,y) dy

L
=wx(t,x) —i—/o ky(x,y)w(t,y)dy —W%— k(x,0)w(t,0).

Differentiating (Fred-transfo) w.r.t x gives
L
—u(tx) = w60+ [y w(ey)dy.

0

On the other hand,
L L L
- [ sttty = [ (“eton+ [ ateoktoy)do Jwlen) .

As a result, k has to satisfy the following kernel equation :

L
{ky(xuy) + kx(x, ¥) + /0 g(x,0)k(o,y)do = g(x,y),
k(x,0) = 0.
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The equation of the adjoint kernel

Let us introduce the adjoint kernel
k*(x,y) = k(y, x).
Then, k* has to verify
Li —_—
ke (x,y) + ky(x,y) + / gly,o)k*(x,0)do = g(y, x),
0 x,y € (0,L).
k*(0,y) =0,

==
*
—
o
<
—
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The equation of the adjoint kernel

Let us introduce the adjoint kernel
k*(x,y) = k(y, x).

Then, k* has to verify
Li [
K () + K (0 + [ B0k (x,0)do = 2.

k*(x,0) = U(x), (well posed for every U),
k*(0,y) =0,

x,y € (0,L).

There is an infinite number of choices for the kernel.

y
L
k*(0,y) /\
— X
0 U(x) L
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The equation of the adjoint kernel

Let us introduce the adjoint kernel
k*(x,y) = k(y, x).

Then, k* has to verify
Li [
K () + K (0 + [ B0k (x,0)do = 2.

k*(x,0) = U(x), (well posed for every U),
k*(0,y) =0,

x,y € (0,L).

There is an infinite number of choices for the kernel.

y
L
k*(0,y) /\
— X
0 U(x) L

PROBLEM : not every corresponding (Fred-transfo) is invertible.

G. Olive The Fattorini-Hautus test 38 / 48



Assumption (E)

With the assumption (E), we assume that there exists U such that the solution to

L _
K2 (%, y) + K2 (0 y) + /0 20, )K" (x, 0)do = 8y, ),
K*(x,0) = U(x),
k*(0,y) =0,

x,y €(0,L),

satisfies the final condition
k*(L,-) = 0.

We will prove that (Fred-transfo) is then invertible, if (Fatt) holds.
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Invertibility of the transformation

We want to prove that P = 1d — K is invertible. Clearly,

Id — K is invertible <= 1Id — K* is invertible.
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Invertibility of the transformation

We want to prove that P = 1d — K is invertible. Clearly,
Id — K is invertible <= Id — K™ is invertible.
Since K* is compact, by the Fredholm alternative
Id — K™ is invertible <= N =ker(Id — K*) = {0},

and
dim N < 4o0.
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We want to prove that P = 1d — K is invertible. Clearly,
Id — K is invertible <= Id — K™ is invertible.
Since K* is compact, by the Fredholm alternative
Id — K™ is invertible <= N =ker(Id — K*) = {0},

and
dim N < 4o0.
We can establish that :
o N C ker B*, thanks to the final condition k*(L,-) = 0.
o N is stable by A*, thanks to the kernel equation and N C ker B*.
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Invertibility of the transformation

We want to prove that P = 1d — K is invertible. Clearly,
Id — K is invertible <= Id — K™ is invertible.
Since K* is compact, by the Fredholm alternative
Id — K™ is invertible <= N =ker(Id — K*) = {0},

and
dim N < 4o0.
We can establish that :
o N C ker B*, thanks to the final condition k*(L,-) = 0.
o N is stable by A*, thanks to the kernel equation and N C ker B*.
Since N is finite dimensional, A*|n has at least one eigenfunction : A*¢ =X, £ € N, £ #0. Thus,

¢ € ker(A — A*) Nker B,

but
5 # 07

a contradiction with (Fatt). O
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Controllability implies stabilization

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T = L. Then, (E) holds and (Fatt) is satisfied.
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Controllability implies stabilization

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T = L. Then, (E) holds and (Fatt) is satisfied.

Proof :

o Firstly, we solve the free nonhomogeneous equation :

L _
pe(x,y) + py(x,¥) + /0 &0y, 0)p(x, 0)do = 2(y, %),

p(x,0) =0,
p(0,y) =0,

x,y € (0,L).
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Assume that (transp-g) is null-controllable in time T = L. Then, (E) holds and (Fatt) is satisfied.

Proof :

o Firstly, we solve the free nonhomogeneous equation :

L _
pe(%,Y) + y (30 y) + /0 &0y, 0)p(x, 0)do = 2(y, %),

p(x,0) =0, oy e @b
p(0,y) =0,
@ Secondly, we pick a control U such that
L
a(x) + a6 + [ g0 alxa)da =0,
0 x,y € (0,L).

q(x,0) = U(x),
q(0,y) =0, q(L,y)=—p(L,y),
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@ Secondly, we pick a control U such that
L
a(x) + a6 + [ g0 alxa)da =0,
0 x,y € (0,L).

q(x,0) = U(x),
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@ Then, 0 =p+q.

G. Olive The Fattorini-Hautus test 41 / 48



Controllability implies stabilization

Proposition (Coron, Hu and Olive (2016))

Assume that (transp-g) is null-controllable in time T = L. Then, (E) holds and (Fatt) is satisfied.

Proof :

o Firstly, we solve the free nonhomogeneous equation :

L _
Funm+meyyAgumwwmwa:a%n

p(x,0) =0, oy e @b
p(0,y) =0,
@ Secondly, we pick a control U such that
L
a(x) + a6 + [ g0 alxa)da =0,
0 x,y € (0,L).

q(x,0) = U(x),
q(0,y) =0, q(L,y)=—p(L,y),

@ Then, 0 =p+q.

Remark : The null-controllability assumption is stronger than (Fatt).
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Example of g with separated variables

Proposition (Coron, Hu and Olive (2016))

Assume that
g(x,y) = g1(x)g2(y)-
Then, (E) has a solution.
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Example of g with separated variables

Proposition (Coron, Hu and Olive (2016))

Assume that
g(x,y) = g1(x)g2(y)-

Then, (E) has a solution.

Moreover, (Fatt) is equivalent to

L X
/ e Mg1(x) (/ eVea(y) dy) dx #1, VA€ Z(g),
0 0

where Z(g2) = {A € C : [ eMam(y)dy =0}
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Example of g with separated variables

In particular, if we assume
g(x,y) = g(x),

then (Fatt) is equivalent to

L
Alk </\0 —/0 e Mgy (x) dx) £1, Vk#0 (k€Z), (8)

where \, = 2’”’: for k #0 and Mo = fo g1(x) dx.
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Example of g with separated variables

In particular, if we assume
g(x,y) = g(x),

then (Fatt) is equivalent to

1

L
o
(- [emtoen) £1, vkro (ke (8)

where \, = 2”: for k #0 and Mo = fo g1(x) dx.

Moreover, (8) has to be checked only for a finite number of k since

1 L —
(Ao —/ e MXgy(x) dx) — 0.
0 k—+

e o
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Example of g with separated variables

In particular, if we assume
g(x,y) = g(x),
then (Fatt) is equivalent to

1

L
o
(- [emtoen) £1, vkro (ke (8)

where \, = 2”: for k #0 and Mo = fo g1(x) dx.

Moreover, (8) has to be checked only for a finite number of k since

1 L —
(Ao —/ e MXgy(x) dx) — 0.
0 k—+

e o

On the other hand, (8) can fail for an arbitrary large number N of k. For instance :

gl y) =g1(x) = 2K i (&x) .

Lle L

G. Olive The Fattorini-Hautus test 43 / 48



Example of g with separated variables

Finally, if
glxy) = g2(y),
then (Fatt) is equivalent to
L N
/ e’ g (y)dy #0 si do # 0,
0
L
7/ ya(y)dy #1 si Ao =0,
0

where \g = foL g2(y) dy.
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Example of g with separated variables

Finally, if
g(x,y) = &(y),
then (Fatt) is equivalent to

L
/0 e’ g (y)dy #0 si do # 0,

Lo
7/ yg(y)dy #1 si Ao =0,
0

[ ——
where Xo = [ &2(y) dy.

Equivalent to the condition of Argomedo-Bribiesca and Krstic (2015)
But the kernels are different :

/ g2(y) dy, si (x,y) € T+, ; -
=4 # 9(X,Y):/0 e 20 gy(y) dy,

g(y)dy, si(x,y)eT-,

X

(unless Ao = 0).
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Perturbation theorems

Joint work with
MicHEL DUPREZ
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First perturbation theorem

Let H and U be two Hilbert spaces. Assume that
o Ao : D(Ap) C H — H generates a Cp-semigroup on H.
e B € L(U, H) is bounded.
e K € L(H).
Let us form
Ak = Ao + K, D(AK) = D(Ao).

Theorem (Duprez and Olive, 2016)

We assume that :
e 3T* > 0 such that (Ao, B) is exactly controllable in time T*.
e K is compact.
o (Ak, B) is approximatively controllable in time T*.

Then, (Ak, B) is exactly controllable in time T*.

This is known as the uniqueness-compactness argument. Introduced in control theory by E.
Zuazua (1987).
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Second perturbation theorem

Theorem (Duprez and Olive, 2016)
We assume that :

e 3T* > 0 such that (Ao, B) is exactly controllable in time T*.
e K is compact.

o (Ak, B) satisfies the Fattorini-Hautus test

ker(A — Ax) Nker B* = {0}, VAeC.

Then, (Ak, B) is exactly controllable in time T for every T > T*.
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Second perturbation theorem

Theorem (Duprez and Olive, 2016)

We assume that :
e 3T* > 0 such that (Ao, B) is exactly controllable in time T*.
e K is compact.

o (Ak, B) satisfies the Fattorini-Hautus test
ker(A — Ax) Nker B* = {0}, VAeC.

Then, (Ak, B) is exactly controllable in time T for every T > T*.

Applications :
o Controllability of integro-differential equations.
o Controllability of systems of wave equations.
o Controllability of parabolic systems (by transmutation).
@ etc.
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Some references
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Boundary approximate controllability of some linear parabolic systems, G. Orive, Evol.
Equ. Control Theory 3 (2014), no. 1, 167-189.

Approximate controllability conditions for some linear 1D parabolic systems with
space-dependent coefficients, I'. BoyEr aAND G. OLIVE, Math. Control Relat. Fields 4
(2014), no. 3, 263-287.

Stabilization and controllability of first-order integro-differential hyperbolic equations,
J.-M. Coron, L. Hu anp G. OuIvE, J. Funct. Anal. 271 (2016), 3554-3587.

Perturbations of controlled systems, M. Duprrez anD G. OLIVE, submitted (2016).

Thank you for your attention !

articles available at
https://math-golive.com
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