当前位置: 首页 / 科研学术 / 学术预告 / 正文

Effective reduction of high-dimension systems via normally hyperbolic invariant manifolds theory

作者:   时间:2019-12-16   点击数:

报告题目:Effective reduction of high-dimension systems via normally hyperbolic invariant manifolds theory

报告人:陈双 博士后  华中科技大学

2018年获四川大学理学博士,师从张伟年教授,研究方向为微分方程与动力系统。20187月至今在华中科技大学数学与统计学院从事博士后研究,合作导师段金桥教授。

报告时间:2019122110:00-10:40

报告地点:知新楼B1032

报告摘要:In this talk, I first introduce some results on the normally hyperbolic invariant manifolds theory, which was laid by Fenichel's series works. Then we apply it to reduce a three-dimensional system modeling the circadian rhythm in Drosophila. After establishing the existence of a compact attractor in the region with biological meaning, under the assumption that the dimerization reactions are fast, we reduce this three-dimensional system to a simpler two-dimensional system on the persistent normally hyperbolic slow manifold.

邀请人:司文

 

地址:中国山东省济南市山大南路27号   邮编:250100  

电话:0531-88364652  院长信箱:sxyuanzhang@sdu.edu.cn

Copyright@山东大学数学学院

微信公众号