报告题目:Effective reduction of high-dimension systems via normally hyperbolic invariant manifolds theory
报告人:陈双 博士后 华中科技大学
2018年获四川大学理学博士,师从张伟年教授,研究方向为微分方程与动力系统。2018年7月至今在华中科技大学数学与统计学院从事博士后研究,合作导师段金桥教授。
报告时间:2019年12月21日10:00-10:40
报告地点:知新楼B1032
报告摘要:In this talk, I first introduce some results on the normally hyperbolic invariant manifolds theory, which was laid by Fenichel's series works. Then we apply it to reduce a three-dimensional system modeling the circadian rhythm in Drosophila. After establishing the existence of a compact attractor in the region with biological meaning, under the assumption that the dimerization reactions are fast, we reduce this three-dimensional system to a simpler two-dimensional system on the persistent normally hyperbolic slow manifold.
邀请人:司文