当前位置: 首页 / 科研学术 / 学术预告 / 正文

Monochromatic connected matchings, paths and cycles in 2-edge-colored multipartite graphs

作者:   时间:2019-07-18   点击数:

报告题目:Monochromatic connected matchings, paths and cycles in 2-edge-colored multipartite graphs

 

报告人:Xujun Liu

 

报告人简介:Xujun Liu,就读于美国伊利诺伊大学厄巴纳-香槟分校UIUC

 

摘要:

We solve four similar problems: For every fixed s and large n, we describe all values of n1, …, ns such that for every 2-edge-coloring of the complete s-partite graph Kn1,...,ns there exists a monochromatic (i) cycle C2n with 2n vertices, (ii) cycle C≥2n with at least 2n vertices, (iii) path P2n with 2n vertices, and (iv) path P2n+1 with 2n + 1 vertices. This implies a generalization of the conjecture by Gy´arf´as, Ruszink´o, S´ark˝ozy and Szemer´edi that for every 2-edge-coloring of the complete 3-partite graph Kn,n,n there is a monochromatic path P2n+1. An important tool is our recent stability theorem on monochromatic connected matchings (A matching M in G is connected if all the edges of M are in the same component of G). We will also talk about exact Ramsey-type bounds on the sizes of monochromatic connected matchings in 2-colored multipartite graphs. Moreover, we will talk about the existence of long monochromatic paths and cycles in 2-edge-colored graphs with large minimum degree. Joint work with J´ozsef Balogh, Alexandr Kostochka and Mikhail Lavrov.

 

邀请人:王光辉教授

 

报告时间:2019813日上午9:00

 

地点:知新楼B1032报告厅

 

地址:中国山东省济南市山大南路27号   邮编:250100  

电话:0531-88364652   投稿信箱:mathweb@sdu.edu.cn

Copyright@山东大学数学学院

微信公众号